Les meilleurs professeurs de Physique - Chimie disponibles
Chris
5
5 (483 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Houssem
5
5 (174 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Greg
5
5 (334 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (137 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chris
5
5 (483 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Houssem
5
5 (174 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Greg
5
5 (334 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (137 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

Présentation

Comment s'initier à la physique-chimie ?
Avant de commencer le cours, il est important de savoir de quoi il en retourne.

Cette partie est nouvelle pour les étudiants, puisque seule une approche descriptive du champ magnétique a fait l’objet d’une présentation en classe de première S. Cette partie s’appuie sur les nombreuses applications présentes dans notre environnement immédiat : boussole, moteur électrique, alternateur, transformateur, haut-parleur, plaques à induction, carte RFID... Il s’agit de restituer toute la richesse de ces applications dans un volume horaire modeste, ce qui limite les géométries envisagées et le formalisme utilisé. Le point de vue adopté cherche à mettre l’accent sur les phénomènes et sur la modélisation sommaire de leurs applications. L’étude sera menée à partir du flux magnétique en n’envisageant que des champs magnétiques uniformes à l’échelle de la taille des systèmes étudiés. Toute étude du champ électromoteur est exclue. L’induction et les forces de Laplace dans un circuit mobile sont introduites dans le cas d’un champ uniforme et stationnaire, soit dans le modèle des rails de Laplace, soit dans celui d’un cadre rectangulaire en rotation. Ce dernier modèle permet d’introduire la notion de dipôle magnétique et une analogie de comportement permet de l’étendre au cas de l’aiguille d’une boussole.

Le succès de cet enseignement au niveau de la classe de PCSI suppose le respect de ces limitations : cet enseignement n’est pas une étude générale des phénomènes d’induction. Corrélativement, l’enseignement de cette partie doit impérativement s’appuyer sur une démarche expérimentale authentique, qu’il s’agisse d’expériences de cours ou d’activités expérimentales.

Objectifs généraux de formation

Qu'est-ce-que l'électromagnétisme ?
Nous vous détaillerons ici les différents points qui seront abordés durant le cours.

Les compétences suivantes seront développées dans cette partie du programme :

  • Maîtriser les notions de champ de vecteurs et de flux d’un champ de vecteurs
  • Évaluer les actions d’un champ magnétique extérieur sur un circuit parcouru par un courant ou par
    analogie sur un aimant
  • Utiliser la notion de moment magnétique
  • Connaître ou savoir évaluer des ordres de grandeur
  • Analyser qualitativement les systèmes où les phénomènes d’induction sont à prendre en compte
  • Maîtriser les règles d’orientation et leurs conséquences sur l’obtention des équations mécaniques et électriques
  • Effectuer des bilans énergétiques
  • Connaître des applications relevant du domaine de l’industrie ou de la vie courante où les
    phénomènes d’induction sont présents et déterminants dans le fonctionnement des dispositifs
  • Mettre en œuvre des expériences illustrant la manifestation des phénomènes d’induction

Dans le bloc 1. « Champ magnétique » vise à faire le lien avec le programme de la classe de première S et à permettre à l’étudiant de disposer des outils minimaux nécessaires ; l’accent est mis sur le concept de champ vectoriel, sur l’exploitation des représentations graphiques et sur la connaissance d’ordres de grandeur. Une étude plus approfondie de la magnétostatique sera conduite en seconde année.

Champ magnétique :

  • Sources de champ magnétique ; cartes de champ magnétique.
    • Exploiter une représentation graphique d’un champ vectoriel, identifier les zones de champ uniforme, de champ faible, et l’emplacement des sources.
    • Connaître    l’allure    des    cartes    de    champs magnétiques pour un aimant droit, une spire circulaire et une bobine longue.
    • Décrire un dispositif permettant de réaliser un champ magnétique quasi uniforme.
    • Connaître des ordres de grandeur de champs magnétiques : au voisinage d’aimants, dans un appareil d’IRM, dans le cas du champ magnétique terrestre.
  • Lien entre le champ magnétique et l’intensité du courant.
    • Évaluer l’ordre de grandeur d’un champ magnétique à partir d’expressions fournies.
    • Orienter le champ magnétique créé par une bobine « infinie » et connaître son expression.
  • Moment magnétique.
    • Définir le moment magnétique associé à une boucle de courant plane.
    • Par analogie avec une boucle de courant, associer à un aimant un moment magnétique.
    • Connaître un ordre de grandeur du moment magnétique associé à un aimant usuel.

Dans le bloc 2. « Actions d’un champ magnétique », le professeur est libre d’introduire la force de Laplace avec ou sans référence à la force de Lorentz. Il s’agit ici de se doter d’expressions opérationnelles pour étudier le mouvement dans un champ uniforme et stationnaire (soit d’une barre en translation, soit d’un moment magnétique en rotation modélisé par un cadre rectangulaire).

Actions d’un champ magnétique :

  • Densité linéique de la force de Laplace dans le cas d’un élément de courant filiforme.
  • Résultante et puissance des forces de Laplace s’exerçant sur une barre conductrice en translation rectiligne sur deux rails parallèles (rails de Laplace) dans un champ magnétique extérieur uniforme, stationnaire et orthogonal à la barre.
    • Différencier le champ magnétique extérieur subi du champ magnétique propre créé par le courant filiforme.
    • Établir et connaître l’expression de la résultante des forces de Laplace dans le cas d’une barre conductrice placée dans un champ magnétique extérieur uniforme et stationnaire.
    • Évaluer la puissance des forces de Laplace.
  • Couple et puissance des actions mécaniques de Laplace dans le cas d’une spire rectangulaire, parcourue par un courant, en rotation autour d’un axe de symétrie de la spire passant par les deux milieux de côtés opposés et placée dans un champ magnétique extérieur uniforme et stationnaire orthogonal à l’axe.
    • Établir et connaître l’expression du moment du couple subi en fonction du champ magnétique extérieur et du moment magnétique de la spire rectangulaire.
  • Action d’un champ magnétique extérieur uniforme sur un aimant.
  • Positions d’équilibre et stabilité.
    • Mettre en œuvre un dispositif expérimental pour étudier l’action d’un champ magnétique uniforme sur une boussole.
  • Effet moteur d’un champ magnétique tournant.
    • Créer un champ magnétique tournant à l’aide de deux ou trois bobines et mettre en rotation une aiguille aimantée.

Le bloc 3. « Lois de l’induction » repose sur la loi de Faraday e = − dφ/dt qui se prête parfaitement à une introduction expérimentale et qui peut constituer un bel exemple d’illustration de l’histoire des sciences. On n’omettra pas, à ce sujet, d’évoquer les différents points de vue possibles sur le même phénomène selon le référentiel dans lequel on se place.

Lois de l’induction :

  • Flux d’un champ magnétique.
  • Flux d’un champ magnétique à travers une surface s’appuyant sur un contour fermé orienté.
    • Évaluer le flux d’un champ magnétique uniforme à travers une surface s’appuyant sur un contour fermé orienté plan.
  • Loi de Faraday.
  • Courant induit par le déplacement relatif d’une boucle conductrice par rapport à un aimant ou un circuit inducteur. Sens du courant induit.
  • Loi de modération de Lenz.
  • Force électromotrice induite, loi de Faraday.
    • Décrire, mettre en œuvre et interpréter des expériences illustrant les lois de Lenz et de Faraday.
    • Utiliser la loi de Lenz pour prédire ou interpréter les phénomènes physiques observés.
    • Utiliser la loi de Faraday en précisant les conventions d’algébrisation.

Le bloc 4. « Circuit fixe dans un champ magnétique qui dépend du temps » aborde le phénomène d’auto-induction puis le couplage par mutuelle inductance entre deux circuits fixes. Elle traite du modèle du transformateur de tensions.

Circuit fixe dans un champ magnétique qui dépend du temps :

  • Auto-induction.
  • Flux propre et inductance propre.
  • Étude énergétique.
    • Différencier le flux propre des flux extérieurs.
    • Utiliser la loi de modération de Lenz.
    • Évaluer et connaître l’ordre de grandeur de l’inductance propre d’une bobine de grande longueur, le champ magnétique créé par une bobine infinie étant donné.
    • Mesurer la valeur de l’inductance propre d’une bobine.
    • Conduire un bilan de puissance et d’énergie dans un système siège d’un phénomène d’auto-induction en s’appuyant sur un schéma électrique équivalent.
  • Cas de deux bobines en interaction.
  • Inductance mutuelle entre deux bobines.
    • Déterminer l’inductance mutuelle entre deux bobines de même axe de grande longueur en «influence totale», le champ magnétique créé par une bobine infinie étant donné.
  • Circuits électriques à une maille couplés par le phénomène de mutuelle induction en régime sinusoïdal forcé.
  • Transformateur de tension.
    • Connaître des applications dans le domaine de l’industrie ou de la vie courante.
    • Établir le système d’équations en régime sinusoïdal forcé en s’appuyant sur des schémas électriques équivalents.
    • Établir la loi des tensions.
  • Étude énergétique.
    • Conduire un bilan de puissance et d’énergie.

Le bloc 5. « Circuit mobile dans un champ magnétique stationnaire » est centré sur la conversion de puissance. Des situations géométriques simples permettent de dégager les paramètres physiques pertinents afin de modéliser le principe d’un moteur à courant continu ou un dispositif de freinage, puis par adjonction d’une force de rappel un haut-parleur électrodynamique.

Circuit mobile dans un champ magnétique stationnaire :

  • Conversion de puissance mécanique en puissance électrique.
  • Rail de Laplace. Spire rectangulaire soumise à un champ magnétique extérieur uniforme et en rotation uniforme autour d’un axe fixe orthogonal au champ magnétique.
  • Freinage par induction
    • Interpréter qualitativement les phénomènes observés.
    • Écrire les équations électrique et mécanique en précisant les conventions de signe.
    • Effectuer un bilan énergétique.
    • Connaître des applications dans le domaine de l’industrie ou de la vie courante.
    • Expliquer l’origine des courants de Foucault et en connaître des exemples d’utilisation.
    • Mettre en évidence qualitativement les courants de Foucault.
  • Conversion de puissance électrique en puissance mécanique
  • Moteur à courant continu à entrefer plan.
  • Haut-parleur électrodynamique.
    • Analyser le fonctionnement du moteur à courant continu à entrefer plan en s’appuyant sur la configuration des rails de Laplace.

Comment accéder à un physique chimie cours ?

Définition des différents types de champs

Champ électrique

Qu'est est l'intérêt de l'électromagnétisme ?
Le champ électrique est une composante du champ électromagnétique.

En physique, on appelle champ électrique tout champ vectoriel créé par des particules électriquement chargées. Plus exactement, lorsque nous sommes en présence d'une particule chargée, les propriétés locale de l'espace défini sont alors modifié ce qui permet de définir la notion de champ. En effet, si une autre charge se trouve être dans le dit champ, elle subira ce qu'on appelle l'action de la force électrique qui est exercée par la particule malgré la distance. On dit alors du champ électrique qu'il est le médiateur de la dite action à distance.

Si on se veut plus précis, on peut définir dans un référentiel galiléen défini, une charge q définie de vecteur vitesse v qui subit de la part des autres charges présentes, qu'elles soient fixes ou mobiles, une force qu'on définira de force de Lorentz. Cette force se décompose ainsi :

[ overrightarrow { f } = q left ( overrightarrow { E } + overrightarrow { v } wedge overrightarrow { B } right) ]

avec :

  • [ overrightarrow { E } ] le champ électrique. Celui-ci décrit dans ce cas la partie de la force de Lorentz qui est indépendante de la vitesse de la charge
  • [ overrightarrow { B } ] le champ magnétique. Celui-ci décrit ainsi la partie de la force exercée sur la charge qui dépend du déplacement de cette même charge dans le référentiel choisi.

De plus, il est important de noter que les deux champs, électrique et magnétique, dépendent du référentiel d'étude.

Avec cette formule, on peut alors définir le champ électrique comme étant le champ traduisant l'action à distance subie par une charge électrique fixe dans un référentiel défini de la part de toutes les autres charges, qu'elles soient mobiles ou fixes.

Mais on peut également définir le champ électrique comme étant toute région de l'espace dans laquelle une charge est soumise à une force dite de Coulomb.

On commence à parler de champ électrostatique lorsque, dans un référentiel d'étude, les charges sont fixes. Notons d'ailleurs que le champ électrostatique ne correspond pas au champ électrique comme décrit plus haut dans cet article puisqu'en effet, lorsque les charges sont en mouvement dans un référentiel, il faut ajouter à ce référentiel un champ électrique qui est induit par les déplacement des charges afin d'obtenir un champ électrique complet.

Mais, le champ électrique reste dans la réalité un caractère relatif puisqu'il ne peut exister indépendamment du champ magnétique. En effet, si on observe la description correcte d'un champ électromagnétique, celui-ci fait intervenir un tenseur quadridimensionnel de champ électromagnétique dont les composantes temporelles correspondent alors à celle d'un champ électrique. Seul ce tenseur possède un sens physique. Alors, dans le cas d'un changement de référentiel, il est tout à fait possible de transformer un champ magnétique en champ électrique et inversement.

Où trouver un professeur de sciences physiques ?

Le champ électromagnétique

En physique, on appelle champ électromagnétique la représentation dans l'espace d'une force électromagnétique exercée par des particules chargées. Ce champ représente alors l'ensemble des composantes de la force électromagnétique qui s'appliquent à une particule chargée qui se déplace alors dans un référentiel galiléen.

On peut alors définir la force subit par une particule de charge q et de vecteur vitesse par l'expression suivante :

[ overrightarrow { f } = q left ( overrightarrow { E } + overrightarrow { v } wedge overrightarrow { B } right) ]

avec :

[ overrightarrow { E } ] le champ électrique. Celui-ci décrit dans ce cas la partie de la force de Lorentz qui est indépendante de la vitesse de la charge
[ overrightarrow { B } ] le champ magnétique. Celui-ci décrit ainsi la partie de la force exercée sur la charge qui dépend du déplacement de cette même charge dans le référentiel choisi.

En effet la séparation de la partie magnétique et de la partie électrique de dépend que du point de vue pris selon le référentiel d'étude.

De plus, il peut être intéressant de savoir que les équations de Maxwell régissent les deux composantes couplées, c'est à dire électrique et magnétique, de sorte que toute variation d'une composante induira la variation de l'autre composante.

D'ailleurs, le comportement des champs électromagnétiques se trouve décrit de façon classique par les équations de Maxwell et de manière plus générale par l'électrodynamique quantique.

La façon la plus utilisée afin de définir le champ électromagnétique est celle du tenseur électromagnétique de la relativité restreinte.

Le champ électrostatique

On parle de champ électrostatique lors que les charges qui constitue le champ sont au repos dans le référentiel d'étude. Ce champ est donc déduit de l'expression de la loi de Coulomb, aussi appelée interaction électrostatique.

Le champ gravitationnel

En physique classique, on appelle champ gravitationnel, ou encore champ de gravitation, un champ qui est réparti dans l'espace et dû à la présence d'une masse qui est alors susceptible d'exercer une influence gravitationnelle sur tout les autres corps pouvant être présent à proximité immédiate ou non.

On peut démontrer que le champ gravitationnel créé en un point quelconque par un corps ponctuel dérive d'un potentiel scalaire dit newtonien.

En physique classique, le champ gravitationnel ou champ de gravitation est un champ réparti dans l'espace et dû à la présence d'une masse susceptible d'exercer une influence gravitationnelle sur tout autre corps présent à proximité (immédiate ou pas). L'introduction de cette grandeur permet de s'affranchir du problème de la médiation de l'action à distance apparaissant dans l'expression de la force de gravitation universelle.

On peut interpréter le champ gravitationnel comme étant la modification de la métrique de l'espace-temps. L'approximation newtonienne est alors valable uniquement dans le cas où les corps présentent une vitesse faible par rapport à celle de la lumière dans le vide et si le potentiel gravitationnel qu'ils créent est tel que le quotient du potentiel gravitationnel sur le carré de la vitesse de la lumière dans le vide est négligeable.

On peut approcher le champ électrique et le champ gravitationnel. En effet, l'expression du champ et du potentiel ne sont différents que d'une constante. De plus, les principaux théorèmes de calculs, celui de la superposition ou de Gauss par exemple, peuvent s'appliquer dans les deux cas. Ce qui les différencie alors est le caractère attractif, donc entre deux charges de signe opposé, ou répulsif, donc entre deux charges de même signe, du champ électrique tandis que le champ gravitationnel ne peut être qu'attractif.

Les équations de Maxwell

Les équations de Maxwell-Gauss, aussi connues sous le noms d’équations de Maxwell-Lorenz sont des équations fondamentales de la physique. En effet, ces sont elles qui régissent l’électromagnétisme. Elles tiennent leur nom du physicien James Clerk Maxwell d’origine écossaise. Toute sa vie il a travaillé sur les champs électriques et magnétiques et il a également contribué à l’élaboration de nombreuses lois physiques dans son domaine. Il est considéré comme l’un des scientifiques les plus influents du IXXème siècle.

Elle réunit sous la forme d’équations intégrales des lois déjà connues telles que celles de théorèmes de Gauss, Ampère et Faraday.

Les équation de Maxwell sont essentielles puisqu’elles démontrent qu’en régime stationnaire, les champs électrique et magnétiques sont indépendants l’un de l’autre, ce qui n’est pas nécessairement le cas lorsque l’on se trouve en régime variable. En effet, dans le cas le plus général, il faut alors parler du champ électromagnétique puisque la séparation entre l’électrique et le magnétique n’est qu’un aspect visualisé par l’Homme.

Lois à maîtriser au cours de la formation

Le principe de superposition

Il est possible d'appliquer le principe de superposition à un système de type entrée-sortie si :

  • La somme de deux entrées quelconque correspond à la somme des deux sorties correspondantes ;
  • Un multiple d'une entrée quelconque correspond le même multiple de la sortie correspondante.

Dans ce cas, c'est-à-dire celui d'un système physique, on peut appeler l'entrée excitation et la sortie réponse.

On obtient alors, en notant les excitations ƒ et les réponses x (donc les mouvements généré par les forces mécaniques ƒ) :

  • Lorsque l'on sollicite le système par une entrée, donc une excitation notée ƒ1, une réponse, donc un déplacement, qui sera noté x1 ;
  • Lorsque l'on sollicite le système par une entrée, donc une excitation notée ƒ2, une réponse, donc un déplacement, qui sera noté x2 .

Le théorème de Gauss

Le théorème de Gauss permet, en électromagnétisme, de calculer le flux d'un champ électrique à travers une surface qui est fermée et ce grâce à la connaissance des charges électriques que cette surface renferme.

Il s'énonce ainsi :

Le flux du champ électrique à travers une surface S fermée est égal à la somme des charges électriques contenues dans le volume V délimité par cette surface, divisée par la permittivité du vide.

Loi de Coulomb

Coulomb, un physicien français, a établi en 1758 que le champ doit varier comme le carré inverse de la distance entre les charges à une précision de 0,02 sur l'exposant avec l'aide d'un dispositif appelé balance de Coulomb. Cette balance est constituée d'un fil de torsion en argent sur lequel est fixé des matériaux chargés. Ainsi, la loi d'attraction entre deux charges ponctuelles notées q1 et q2 , fixes dans le référentiel défini et séparées par une distance r, se définit ainsi :

  • La force est dirigée selon la droite reliant les deux charges ;
  • Elle est attractive si les charges sont de signes opposée et répulsive sinon ;
  • Son intensité est proportionnelle aux valeurs de q1 et q2 et varie en raison inverse du carré de la distance r.

Il est alors possible de traduire ces caractéristiques en une formule exprimant la force exercée par q1 sur q2 :

[ overrightarrow{ f _ { e } } = \frac { 1 } { 4 pi epsilon _ { 0 } } \frac { q _ { 1 } q _ { 2 } }{ r ^ { 2 } } overrightarrow { e _ { r } } ]

avec :

  • [ overrightarrow { e _ { r } } ] le vecteur unitaire de la droite reliant q1 et q2 qui est dirigée dans le sens 1 vers 2
  • [ epsilon _ { 0 } ] la permittivité diélectrique du vide

Ce qui peut rendre la compréhension de cette formule compliquée est la notion de force à distance. En effet, comment une charge peut savoir qu'une autre charge ponctuelle se trouve à une certaine distance d'elle et alors exercer sur force sur cette charge en fonction de la distance qui les sépare.

Dans ce cas, tout comme pour un champ gravitationnel, il peut être utile de séparer dans la loi de force ce qui dépend de la charge subissant la force et donc d'obtenir la relation suivante :

[ \begin{cases} overrightarrow { f } = q _ { 2 } left[ \frac { 1 } { 4 pi epsilon _ { 0 } } \frac { q _ { 1 } } { r ^ { 2 } } overrightarrow { e _ { r } } right] = q _ { 2 } overrightarrow { E }
overrightarrow{ E } = \frac { 1 } { 4 pi epsilon } \frac { q _ { 1 } }{ r ^ { 2 } } overrightarrow { e _ { r } } \end{cases} ]

avec :

  • [ overrightarrow { E }  ] un champ électrique électrostatique créé à partie de la charge q1 au point où se trouve la seconde charge q2

Ainsi, avec cette relation, il est plus aisé d'interpréter l’existence d'une force à distance. En effet, la charge considérée comme "source", c'est-à-dire q1, crée en tout point de l'espace un champ électrique dont la forme est donnée par la relation exprimée ci-dessus, et une charge quelconque considérée comme "test" subira l'effet de ce champ sous la forme d'une force égale au produit de cette charge par le champ électrostatique. Dans ce cas, ce champ électrostatique apparaîtra comme la force entre deux particules ponctuelles fixes par unité de charge.

Méthode de calcul de champ magnétique à maîtriser au cours de la formation

Comment faut-il faire pour calculer un champ ?
Il existe différentes méthodes de calculer un champ magnétique.

Méthode 1 : Théorème de superposition.

  • Décomposer la distribution de courant en quelques distributions simples,
  • Pour chaque distribution, calculer le champ magnétique au point M considéré en utilisant éventuellement les méthodes qui suivent,
  • Additionner les champs en indiquant qu'il s'agit du théorème de superposition.

Attention :

  • Les champs s'ajoutent en un même point M de l'espace,
  • Il s'agit d'une somme vectorielle.

Rappel : somme vectorielle

Méthode 1 :

Utiliser la relation de Chasles en utilisant une notation intrinsèque pour les champs.

Méthode 2 :
  • Déterminer la direction du champ total au point M :
    • Méthode 1 : associer deux par deux des champs symétriques,
    • Méthode 2 : trouver un plan de symétrie ou deux plans d'antisymétrie de la distribution de courants passant par M.
  • Projeter les champs à additionner dans cette direction,
  • Sommer ces différentes projections :
    • Méthode 3 : Faire la somme des composantes dans une base orthonormée bien choisie,
    • Méthode 4 : Somme graphique.

Méthode 2 : Théorème d'Ampère

  • Déterminer l'allure du spectre dans tous l'espace d'étude :
  • Déterminer la direction du champ en un point M quelconque de l'espace :
    • Méthode 1 : associer deux par deux des champs élémentaires symétriques,
    • Méthode 2 : trouver un plan de symétrie ou deux plans d'antisymétrie de la distribution de courants, passant par M.
  • Déterminer les variables dont dépend la norme du champ dans l'espace, en évoquant des arguments d'invariance par translation ou rotation du problème vu par l'observateur,
  • Choisir un contour d'Ampère passant par le point où on cherche le champ : Pour simplifier le calcul de la circulation, le contour doit suivre les lignes de champ ou les couper orthogonalement,
  • Appliquer le théorème d'Ampère.

Méthode 3 : Calcul par intégrale

Pour avoir une méthodologie complète, je vous invite à vous diriger vers notre cours "Calcul d’Intégrales Multiples Vectorielles ou Scalaires".

Méthode 4 - Astuces

Pour une distribution de courant de type solénoïde infini, il faut admettre que le champ à l'extérieur du solénoïde est nul , puis utiliser le théorème d'Ampère.

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00 (1 note(s))
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !