Les meilleurs professeurs de Physique - Chimie disponibles
Chris
5
5 (456 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Houssem
5
5 (197 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4.9
4.9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chris
5
5 (456 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Houssem
5
5 (197 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4.9
4.9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

Avant de commencer : Généralités sur les ondes

La notion d'onde

Une onde est une déformation ou une vibration qui se propage dans un milieu défini. Il existe trois types différents d’ondes :

  • Mécanique : Les ondes magnétiques nécessitent une matière qui se déforme afin de se propager. Ce matériau a la capacité recouvrer son état initial grâce aux forces de restauration qui inversent la déformation.
  • Électromagnétique : Les ondes électromagnétiques quant à elles n’ont pas besoin de support pour se déplacer : elles correspondent à des oscillation périodiques de champs électriques et magnétiques qui peuvent alors se déplacer dans le vide.
  • Gravitationnelle : Les ondes gravitationnelles n’ont plus de support pour se déplacer puisque ce sont les déformations de la géométrie de l’espace-temps qui se propagent.
Avez-vous déjà pensé à filmer une corde de guitare en train de vibrer afin d'observer les remarquables déformations qu'elle subit ?

Propagation d’une onde

Un onde se propage dans un milieu qui le lui permet car la propagation résulte de la mise en mouvement d’une particule dans le temps mais aussi dans l’espace  par rapport au milieu. Cela est possible uniquement si la source est dans un état vibratoire. On peut caractériser la propagation d’une onde par sa vitesse de propagation à l’aide la formule suivante : [ c = lambda times f ] Avec :

  • c la célérité de l’onde ;
  • λ la longueur d’onde ;
  • f la fréquence de l’onde.

A savoir

La vitesse de la lumière est de 300 000 km.s-1 et la célérité d’une onde sonore est de 344 m.s-1

Attention à ce que vous dîtes : la vitesse de la lumière est plus élevée que celle du son. Veillez à ne pas paraître brillant avant qu'on ne vous entende.

Onde stationnaire

Une onde dite stationnaire correspond à la propagation simultanée et dans des sens opposés de plusieurs ondes de même fréquence et de même amplitude dans un même milieu. Ainsi, on observera une figure dont certains points sont fixes, appelés nœuds de pression, dans le temps. Il est alors possible d’observer une vibration stationnaire et d’intensité différente en chaque point observé au lieu de pouvoir observer une onde qui se propage.

Onde mécanique progressive

Une onde mécanique progressive correspond a un phénomène de perturbation locale dans un milieu matériel. Ainsi, pour une onde mécanique, on ne peut observer de déplacement de matière mais un transport d’énergie.

Déplacement d’énergie

L’onde, lorsqu’elle se propage, s’accompagne d’une modification temporaire des propriétés du milieu comme la position, la vitesse et la distance entre les particules constitutives du milieu modifié. Ainsi, l’énergie, qu’elle soit potentielle ou cinétique, varie lorsque le signal est atteint. Notez tout de même que la variation d’énergie est temporaire et se déplace de proche en proche : elle ne dure que le temps de passage de l’onde.

La dimension d’une onde

Avant d’expliquer les dimensions d’une onde, il faut savoir qu’une onde progressive à la propriété de se propager dans toutes les directions offertes par la source de l’onde.

Onde progressive à une dimension

On dit d’une onde quelle présente une dimension quand elle est définie par une direction de propagation et par un sens de déplacement

Onde progressive à deux dimensions

On dit d’une onde quelle présente deux dimensions lorsque la propagation a lieu dans différentes direction d’un plan, c’est-à-dire un espace à deux dimensions.

Onde progressive à trois dimensions

On dit d’une onde quelle présente trois dimensions lorsque la propagation a lieu dans les différentes directions de l’espace.

Exemples

Il existe différentes façons de mettre en valeur des ondes :

  • Onde à une dimension
    • Corde vibrante
    • Fibre optique
  • Deux dimensions
    • Surface d’un plan d’eau
    • Table d’harmonie d’un instrument de musique
  • Trois dimensions
    • La propagation du son de l’orgue dans le volume intérieur d’une église
    • Interférences lumineuses dans un espace
Tous le monde reconnaît les déformation si particulière de l'eau.
Les moins jeunes se souviendront du verre d'eau dans Jurassic Park

Onde transversale

On dit d’une onde qu’elle est transversale lorsque la direction du mouvement des éléments du milieu de propagation est orthogonale à la direction de propagation.

Onde longitudinale

On dit d’une onde qu’elle est longitudinale lorsque la direction du mouvement des éléments du milieu de propagation est parallèle à la direction de propagation.

Milieu de propagation

Le milieu de propagation d’une onde doit être un milieu matériel constitué de particules en interaction de telle sorte que ces particules semblent reliées entre-elles par des petits ressorts tendant ces particules à retrouver leur position d’équilibre. Ainsi, tout déplacement d’une particule entraînera le déplacement des particules voisines et ainsi de suite. Cet ensemble constitue alors un milieu élastique quasi-continu.

La réfraction

La réfraction de la lumière correspond au changement de direction du rayon lumineux lorsque celui-ci traverse une surface séparant deux milieux d'indices de réfraction différents.

En effet, la loi de Snell-Descartes de la réfraction exprime le changement de direction d'un faisceau lumineux lors de la traversée d'une paroi qui sépare deux milieux différents. Il faut d'abord savoir que chaque milieu est caractérisé par sa capacité à « ralentir » la lumière. On modélise cette caractéristique par son indice de réfraction n qui s'exprime sous la forme : v est la vitesse de la lumière dans ce milieu et c est la vitesse de la lumière dans le vide (souvent arrondie à 3.108 m.s-1 Il est important de savoir que :

  • Le rayon lumineux est dit incident avant d'avoir rencontré la surface réfractante (appelée dioptre), il est dit réfracté après avoir rencontré cette dernière.
  • Le point de rencontre du rayon incident et du dioptre est appelé point d'incidence.
  • Le plan contenant le rayon incident et la normale au dioptre, au point d'incidence est dit plan d'incidence.
  • L'angle orienté i1 pris entre la normale au point d'incidence et le rayon incident est dit angle d'incidence.
  • L'angle orienté i2 pris entre la normale au point d'incidence et le rayon réfracté est dit angle de réfraction.
  • Les angles i1 et i2 sont positifs si ils sont orientés dans le sens trigonométrique (sens inverse des aiguilles d'une montre), négatifs sinon.

On prend n1 l'indice de réfraction du milieu dans lequel se propage le rayon incident et n2 celui du milieu dans lequel se propage le rayon réfracté. Pour pouvoir énoncer la loi de la réfraction, il faut que le rayon réfracté, le rayon incident et la normale (au dioptre) soient dans un même plan qui est appelé le plan d'incidence et que le rayon incident et le rayon réfracté soient situés de part et d'autre de la normale. Lorsque n> n2 (et respectivement n< n2) le rayon réfracté (et respectivement : incident) se rapproche plus rapidement du dioptre que le rayon incident (ou réfracté). Cependant, il existe un cas particulier où le rayon réfracté (ou incident) se retrouve mathématiquement sur le dioptre (sa limite) : il y a alors réflexion totale.

Caractériser une onde

La période d'une onde musicale

La période d'une onde représente la durée d'une vibration complète, jusqu'au retour à la position initiale. Elle se note T et a une durée en secondes. T : la durée d'un motif de base (Rappel pour les conversions : 1 ms = 1 x 10-3 s).

La fréquence des ondes

La fréquence caractérise le nombre de vibrations en une seconde. Calculée en Hertz de symbole Hz, on l'obtient par le calcul suivant :

avec T le temps en secondes.

A titre d’exemple, la voix humaine produit des sons d'une fréquence allant de 50 Hz à 1000 Hz.

L'amplitude d'une onde

L'amplitude correspond à la variation de la pression du milieu dans lequel se propage l'onde dans le cas d'une onde acoustique. Pour une onde électromagnétique, son amplitude est sa tension maximale et elle se note Umax. Son unité est le Volt (V).

La longueur d'onde

La longueur d'onde est caractérisée par la plus petite distance entre deux points de l'onde situés au même endroit. sur l'axe des ordonnées. Représentant la distance parcourue par l'onde durant sa période, il s'agit de son équivalent spatial.

Le son

Prenez soin de vos oreilles. Ne portez pas trop souvent des écouteurs et ne mettez pas le son à un volume trop élevé ou vous dégraderez de façon définitive vos capacités auditive.

Le son correspond a une vibration mécanique d'un fluide qui va alors se propager, grâce à la déformation élastique du fluide, en prenant la forme d'ondes longitudinales. Les Hommes, mais également beaucoup d'autres animaux, peuvent ressentir cette vibration grâce au sens que nous appelons : l'ouïe. Les ondes sonores audibles sont caractérisées par des fréquences allant de 20 Hz à 20 kHz, ce qui correspond à des longueurs d'onde allant de 0,017 m à 17 m.

La propagation d'une onde sonore dans l'atmosphère

Lorsque l'onde se propage dans un milieu fluide compressible, il est possible d'observer une variation de pression qui va alors se propager sous la forme d'une onde. L'air nous entourant étant un milieu fluide compressible, il est alors possible de ressentir ces ondes sous la forme de son que l'on perçoit grâce aux tympans. Cependant, pour qu'elle soit perceptible, il faut que la variation de pression, parce que son amplitude est faible par rapport à la pression atmosphérique, soit suffisamment rapide et répétée. Il est possible de considérer tout objet vibrant, tel qu'un instrument de musique ou encore un haut-parleur, comme étant une source sonore qui est donc, comme son nom l'indique, la source des vibration de l'air. La perturbation va alors se propager, même si les particules oscillent très peu (soit quelques micromètres autour d'une position stable), d'une façon analogue aux perturbations de l'eau lorsqu'une pierre y tombe : on peut observer des vagues qui s'éloignent peu à peu du point de perturbation bien que l'eau reste au même endroit. En effet, l'eau ne se déplace que verticalement et ne suit pas les vagues (il est possible d'observer ce phénomène en plaçant un objet flottant près de la perturbation : il ne restera à la même position). On peut alors dire que, dans les fluides, l'onde sonore correspond à une onde longitudinale. Ainsi, les particules observées vibrent de façon parallèle à la direction de déplacement de l'onde. Une onde sonore peut également être transmise par un solide vibrant. En effet, la vibration va se propager au sein du solide comme dans les fluides : il y aura de faibles oscillation autour de la position d'équilibre des atomes constituant le solide. La conséquence est alors une contrainte du matériau qui, équivalente à la pression dans un fluide, est très difficile à mesurer. C'est donc la rigidité du matériau qui permettra la transmission des ondes de contraintes transversales. Il peut être intéressant de noter que, la vitesse de propagation du son, également appelée célérité, varie selon différentes propriétés du milieu comme :

  • La nature du milieu ;
  • La température du milieu ;
  • Et la pression du milieu.

Ainsi, dans un gaz parfait, on peut obtenir la vitesse de propagation d'une onde sonore avec la relation suivante : Avec :

  • ρ correspondant à la masse volumique du gaz ;
  • Et χS correspondant à la compressibilité isentropique du gaz.

Il est également possible d'observer une diminution de la vitesse du son lorsque :

  • La densité du gaz augmente, on appelle cela l'effet d'inertie ;
  • La compressibilité du gaz, c'est à dire sa capacité à changer de volume selon la pression qu'il subit, augmente.

Pour calculer la vitesse du son dont l'unité est, rappelons-le, le mètre par seconde, il est possible d'utiliser l'expression suivante : avec T la température en degré Celsius. Mais il est possible d'être plus précis en utilisant les degrés Kelvin. On doit alors se servir de l'expression suivante : Notons que, de façon générale, la vitesse du son dans l'eau est de 1 500 m.s-1. Mais il existe de nombreux milieux où les ondes sonores peuvent se propager de façon encore plus rapide. On peut alors prendre l'exemple de l'acier au sein duquel les ondes se propage une vitesse comprise entre 5 600 et 5 900 m.s-1. Cependant, une onde sonore est incapable de se propager dans le vide puisqu'il faut nécessairement la présence de matière déformable pour que la vibration puisse se propager.

Le tympan humain

Le tympan correspond à une membrane fibreuse qui va séparer l'oreille externe de l'oreille moyenne. Son rôle est de capter les vibrations provoquées par les sons qui parviennent dans le conduit auditif externe pour ensuite les transmettre à la chaîne ossiculaire.

Percevoir les sons

Les êtres-vivants ne perçoivent pas tous la même plage de fréquence. Voici un petit tableau comparatif :

EspèceLimite inférieureLimite supérieure
Éléphant16 Hz12 kHz
Homme20 Hz20 kHz
Chien20 Hz45 kHz
Chat20 Hz65 kHz
Chauve-souris20 Hz500 kHz
Dauphin9 Hz500 kHz

Problème de physique : diffuser le son

On considère un pavillon exponentiel d'axe Ox dans lequel on fait se propager une onde sonore suivant Ox. On note p(x,t) la surpression associée. On fournit l'équation aux dérivées partielles vérifiée par p : où a est une constante positive.

  1. Montrer que le pavillon exponentiel se comporte comme un filtre passe-haut.
  2. Aux hautes fréquences, observe t-on de l'absorption ? de la dispersion ?

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 4.00 (4 note(s))
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !