Les meilleurs professeurs de Maths disponibles
Chris
5
5 (456 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Laurent
4.5
4.5 (112 avis)
Laurent
60€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Anis
4.9
4.9 (95 avis)
Anis
50€
/h
Gift icon
1er cours offert !
Houssem
5
5 (197 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (36 avis)
Sébastien
70€
/h
Gift icon
1er cours offert !
Gaël
5
5 (64 avis)
Gaël
80€
/h
Gift icon
1er cours offert !
Chris
5
5 (456 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Laurent
4.5
4.5 (112 avis)
Laurent
60€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Anis
4.9
4.9 (95 avis)
Anis
50€
/h
Gift icon
1er cours offert !
Houssem
5
5 (197 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (36 avis)
Sébastien
70€
/h
Gift icon
1er cours offert !
Gaël
5
5 (64 avis)
Gaël
80€
/h
Gift icon
1er cours offert !
C'est parti

Résoudre des équations et des inéquations

Comment connaître la valeur d'une inconnue ?
Peu importe la matière, il vous sera indispensable de savoir résoudre une équation ou une inéquation.

Les différents types d’intervalles de nombres réels :

  • [a, b] (fermé borné), contient tous les réels compris entre a et b inclus.
  • ]a, b[ (ouvert borné), idem mais a et b exclus.
  • ]a, b] (resp. [a, b[) (semi-ouvert borné), contient tous les réels strictement supérieurs à a et inférieurs ou égaux à b (resp. réels supérieurs ou égaux à a et strictement inférieurs à b).
  • [a, +∞[ (resp. ] − ∞, b]) (semi-ouvert non borné), contient tous les réels supérieurs ou égaux à a (resp. réels inférieurs ou égaux à b).
  • ]a, +∞[, ]−∞, b[ ou ]−∞, +∞[ (ouvert non borné) idem que précédemment avec des inégalités strictes.

Équation du premier et second degré

Une égalité est inchangée lorsque l’on ajoute un même nombre aux deux membres de l’égalité.
Une égalité est inchangée lorsque l’on multiplie par un même nombre non nul les deux membres
de l’égalité.
Soient a et b deux réels avec a non nul, l’équation ax + b = 0 possède une unique solution : x = −b/a.

On considère l’équation ax2 + bx + c = 0 dans laquelle a, b et c sont trois réels avec a non nul.
Le nombre b² − 4ac est appelé discriminant de l’équation, il est noté ∆.
On rappelle alors le résultat suivant :

  • Si ∆ > 0 alors l’équation possède deux solutions réelles : x1 = (− b −√∆) / 2a et x2 = (−b + √∆) / 2a.
  • Si ∆ = 0 alors l’équation possède une solution réelle : x0 = −b/2a

Remarque

dans le cas où ∆ > 0 on a le résultat suivant :

  • x1 + x2 = −b/a
  • x1 × x2 = c/a

Ceci permet, une solution étant connue, de déterminer l’autre très rapidement.

Inéquations

Une inégalité est inchangée lorsque l’on ajoute un même nombre aux deux membres de l’inégalité.
Une inégalité est inchangée lorsque l’on multiplie par un même nombre strictement positif les deux membres de l’inégalité.
Une inégalité change de sens lorsque l’on multiplie par un même nombre strictement négatif les deux membres de l’inégalité.

Généralités sur les fonctions

Comment exprimer la fonction exponentielle ?
Il existe des fonctions usuelles que tout le monde doit connaître !

Fonction de variable réelle

Définition
Une fonction f de variable réelle et à valeurs réelles est la donnée d’un sous-ensemble de R noté Df , appelé ensemble de définition de la fonction f et d’un procédé qui à tout réel x appartenant à Df associe un unique réel noté f(x), appelé image de x par f.

Remarques :

  • f(x) n’est pas une fonction !
  • Si f(x) = y alors on dit que x est un antécédent de y par f.
  • La variable x utilisée dans la définition est muette.
  • Lorsque f est définie sur une partie de N, on convient de dire que f est une suite numérique (souvent notée u,v,w) et l’image par f d’un entier naturel est notée fn (ou plus fréquemment un,vn,wn).

Courbe représentative, graphe

Définitions

  • Soit f une fonction numérique à variable réelle. Dans le plan muni d’un repère on appelle courbe représentative de f, notée Cf , l’ensemble des points de coordonnées (x, f(x)) où x ∈ Df .
  • Le graphe de f est l’ensemble des couples (x, f(x)) où x ∈ Df , c’est un sous-ensemble de R²

Attention !
Ne pas confondre courbe représentative et graphe d’une fonction. La courbe représentative dépend du repère choisi, ce qui n’est pas le cas du graphe.

Sens de variation d’une fonction

Soit f une fonction définie sur un intervalle I

Définitions

  • f est croissante sur I si : ∀(x, y) ∈ I² , x ≤ y ⇒ f(x) ≤ f(y)
  • f est strictement croissante sur I si : ∀(x, y) ∈ I² , x < y ⇒ f(x) < f(y)
  • f est décroissante sur I si : ∀(x, y) ∈ I² , x ≤ y ⇒ f(x) > f(y)
  • f est strictement décroissante sur I si : ∀(x, y) ∈ I² , x < y ⇒ f(x) > f(y)
  • f est constante sur I si : ∀(x, y) ∈ I² , f(x) = f(y)
  • f est monotone sur I si f est croissante ou si f est décroissante sur I.
  • f est strictement monotone sur I si f est strictement croissante ou si f est strictement décroissante sur I.

On rappelle un théorème reliant sens de variation et signe de la dérivée d’une fonction, ce théorème
sera démontré dans un chapitre ultérieur

Théorème 1

Soit f une fonction dérivable sur un intervalle I.

  • f constante sur I ⇐⇒ f' nulle sur I.
  • f croissante sur I ⇐⇒ f' positive sur I.
  • f décroissante sur I ⇐⇒ f' négative sur I.

Attention !
Ces équivalences sont fausses si I n’est pas un intervalle.

Parité, périodicité

Définitions

Soit f une fonction définie sur Df et I ⊂ Df .

  • On dit que f est paire sur I si :
    • ∀x ∈ I, −x ∈ I
    • ∀x ∈ I, f(−x) = f(x)
  • On dit que f est impaire sur I si :
    • ∀x ∈ I, −x ∈ I
    • ∀x ∈ I, f(−x) = −f(x)

Exemples

  • La fonction carrée est paire sur R ou sur [−1, 1] mais elle n’est pas paire sur [0, 1].
  • La fonction cube est impaire sur R ou sur [−2, 2] mais elle n’est pas impaire sur [−2, 1].
  • La fonction exponentielle n’est ni paire, ni impaire sur R.
  • La fonction nulle est paire et impaire sur R.

Attention !
Le contraire de « la fonction n’est pas paire » n’est pas « la fonction est impaire » !

La proposition suivante montre l’intérêt de la notion de parité :

Proposition 1

Si f est une fonction paire (resp. impaire) sur Df alors on peut restreindre l’étude de f à Df ∩ R+ puisque :

  • Si f est paire sur Df alors ses variations sur Df ∩ R+ et sur Df ∩ R− sont contraires.
    Dans un repère orthogonal, Cf est symétrique par rapport à l’axe des ordonnées.
  • Si f est impaire sur Df alors ses variations sur Df ∩ R+ et sur Df ∩ R− sont de même nature.
    Dans un repère orthogonal, Cf est symétrique par rapport à l’origine du repère.

Définition
Soit f une fonction numérique à variable réelle et T un réel strictement positif. On dit que f est T−périodique si :

  • ∀x ∈ Df , x + T ∈ Df et x − T ∈ Df
  • ∀x ∈ Df , f(x + T) = f(x)

Remarques :

  • Le premier item de la définition ci-dessus équivaut à x ∈ Df ⇔ x + T ∈ Df .
  • Il est clair que si f est T−périodique alors ∀n ∈ N∗, f est également nT−périodique.

La proposition suivante montre l’intérêt de la notion de périodicité :

Proposition 2

Si f est une fonction T−périodique sur Df alors on peut restreindre l’étude de f à Df ∩ [0, T] ou Df ∩ [−T/2 , T/2] puisque :
Si f est T−périodique sur Df alors ses variations sont de même nature sur tout ensemble du type [kT,(k + 1)T] ∩ Df où k ∈ Z.
Dans un repère orthogonal, Cf est obtenue par translations de vecteurs kT~i de la portion de courbe représentative de f sur [0, T] ∩ Df ou sur [−T/2 , T/2] ∩ Df .

Exemple
Les fonctions sinus et cosinus sont 2π−périodiques sur R.

Fonctions majorées, minorées, bornées

Comment représenter la fonction logarithme ?
Il est également essentiel de savoir représenter graphiquement une fonction usuelle.

Définitions
Soit f une fonction et I une partie de Df .

  • f est majorée sur I s’il existe un réel M tel que : ∀x ∈ I, f(x) ≤ M
    On dit que M est un majorant de f sur I.
  • f est minorée sur I s’il existe un réel m tel que : ∀x ∈ I, f(x) ≥ m
    On dit que m est un minorant de f sur I.
  • f est bornée sur I si f est majorée et minorée sur I.

Extréma

On distingue deux notions d’extréma chez les focntions numériques de variable réelle.

Définitions
Soit f une fonction numérique à variable réelle et x0 ∈ Df .

  • f admet un maximum global en x0 si : ∀x ∈ Df , f(x) ≤ f(x0)
  • f admet un minimum global en x0 si : ∀x ∈ Df , f(x) ≥ f(x0)
  • f admet un extremum global en x0 si f admet un maximum global ou un minimum global en x0.

Définitions
Soit f une fonction numérique à variable réelle et x0 ∈ Df .

  • f admet un maximum local en x0 s’il existe un intervalle I ⊂ Df tel que x0 ∈ I et ∀x ∈ I, f(x) ≤ f(x0).
  • f admet un minimum local en x0 s’il existe un intervalle I ⊂ Df tel que x0 ∈ I et ∀x ∈ I, f(x) ≥ f(x0).
  • f admet un extremum local en x0 si f admet un maximum local ou un minimum local en x0.

On rappelle un théorème reliant extréma et dérivée d’une fonction.

Théorème 2

Soit f une fonction dérivable sur Df et x0 ∈ Df .
Si f admet un extremum en x0 et si x0 n’est pas une extrémité de Df alors f'(x0) = 0.

Attention !
La réciproque de ce théorème est fausse.

Opérations algébriques sur les fonctions

Somme de deux fonctions

Définition
Soient f et g deux fonctions définies sur un intervalle I.
On définit la fonction f + g par : ∀x ∈ I, (f + g)(x) = f(x) + g(x).

Proposition 3 : Sens de variation de f + g

  • Si f et g sont (resp. strictement) croissantes sur I alors f +g est (resp. strictement) croissante sur I.
  • Si f et g sont (resp. strictement) décroissantes sur I alors f + g est (resp. strictement) décroissante sur I.

Produit d’une fonction par un réel

Définition
Soient f une fonction définie sur un intervalle I et λ ∈ R.
On définit la fonction λ.f par : ∀x ∈ I, (λ.f)(x) = λ × f(x).

Proposition 4 : Sens de variation de λ.f

  • Si λ > 0 alors λ.f et f ont même sens de variation sur I.
  • Si λ < 0 alors λ.f et f ont des sens de variations contraires sur I.

Produit ou quotient de deux fonctions

Définition
Soient f et g deux fonctions définies sur un intervalle I.

  • On définit la fonction f × g par : ∀x ∈ I, (f × g)(x) = f(x) × g(x).
  • Si g ne s’annule pas sur I alors on définit la fonction f/g par : ∀x ∈ I, (f/g)(x) = f(x)/g(x).

Attention !
On ne cherchera pas à établir de propriété concernant le sens de variation d’un produit ou d’un
quotient de fonctions

Composée de fonctions

Définition
Soient f et g deux fonctions définies respectivement sur les intervalles I et J.
Si f(I) ⊂ J alors on définit la fonction g ◦ f par : ∀x ∈ I, (g ◦ f)(x) = g(f(x)).

Attention !
Prendre garde à l’ordre dans l’écriture de la composée, en général la composée de deux fonctions
n’est pas commutative.

Proposition 5 : Sens de variation de g ◦ f

  • Si f et g ont même sens de variation alors g ◦ f est croissante.
  • Si f et g ont des sens de variation contraires alors g ◦ f est décroissante.

Fonctions usuelles

Quelles sont les fonctions à absolument connaître ?
Les fonctions usuelles sont des fonctions qui sont utilisées de façon classique et triviale dans les calculs.

Fonctions puissances d’exposant entier
Définition
Soit n ∈ Z et f la fonction définie par : f(x) = xn.

  • Si n ∈ N, alors Df = R et f est continue et dérivable sur R.
  • Si n ∈ Z \ N, alors Df = R∗ et f est dérivable sur R∗.
    De plus ∀x ∈ R∗ , f(x) = xn = 1/x−n .

Propriétés :

  • Si n est pair (resp. impair) alors x → xn est paire (resp. impaire) sur R (resp. R∗).
  • Si n ∈ N alors f est dérivable sur R et f' (x) = nxn-1. On établit ensuite facilement le sens de variation de f.
  • Si n ∈ Z\N alors f est dérivable sur R∗ et la dérivée de f a la même expression algébrique que précédemment.
    • Si n = −1 il s’agit de la fonction inverse.
    • Si n = 0 il s’agit de la fonction constante égale à 1.
    • Si n = 1 il s’agit de la fonction identité.
    • Si n = 2 il s’agit de la fonction carrée.
    • Si n = 3 il s’agit de la fonction cube.
  • Le produit, le quotient ou la composée de deux fonctions puissances est une fonction puissance d’après les règles de calcul sur les exposants.
  • Les limites aux bornes de l’ensemble de définition s’obtiennent facilement suivant le signe et la parité de n.

Fonction racine carrée

Définition
La fonction f définie par : f(x) = √x est appelée fonction racine carrée.
Df = R+ et f est continue sur R et dérivable sur R∗+.

Propriétés :

  • f est dérivable sur R∗+, on démontre que f n’est pas dérivable en 0 en utilisant la définition de dérivabilité d’une fonction en un point.
  • ∀x ∈ R∗+ , f'(x) = 1/2√x.
  • La fonction racine carrée est strictement croissante sur R+.
  • La fonction racine carrée est multiplicative, i.e : ∀(x, y) ∈ (R∗+)² , √(a × b) = √a × √b.
  • La fonction racine carrée est la bijection réciproque de la fonction carrée sur R+, plus précisément :
    ∀x ∈ R+, (√x)² = √x² = x.
  • La limite de √x quand x tend vers +∞ est +∞

Attention !
On rappelle que si x < 0 alors √x² = −x.

Fonction logarithme népérien

Définition

La fonction inverse est continue sur R∗+ , elle possède donc des primitives sur R∗+.
La fonction logarithme népérien, notée ln, est l’unique primitive de la fonction inverse sur R∗+ qui s’annule en 1.

  • ln x =x1 (1/t)dt.
  • Dln = R∗+ et ln est continue et dérivable sur R∗+.

Propriétés :

  • ∀x ∈ R∗+, ln'(x) = 1/x.
  • ln est strictement croissante sur R∗+.
  • Pour tous réels a et b strictement positifs
    • ln(a × b) = ln a + ln b.
    • ln(1/a) = − ln a.
    • ln(a/b) = ln a − ln b.
    • ∀n ∈ Z, ln (an) = n ln a.
    • lim x→+∞ ln x = +∞ et \lim x→0+ ln x = −∞.
    • ln réalise une bijection de R∗+ sur R, il existe donc un unique réel dont le logarithme népérien vaut 1, ce réel est noté e.
      ln e = 1, e ≈ 2, 71

Fonction exponentielle

Définition
La fonction ln réalise une bijection de R∗+ dans R, sa bijection réciproque, notée exp, est appelée fonction exponentielle.
La fonction exponentielle, notée exp, vérifie donc : ∀x ∈ R, ∀y ∈ R∗+, y = exp(x) ⇐⇒ x = ln(y).
Dexp = R et exp est continue et dérivable sur R.

Propriétés :

  • ∀x ∈ R, exp'(x) = exp(x).
  • exp est strictement croissante sur R.
  • lim x→+∞ exp(x) = +∞ et \lim x→−∞ exp(x) = 0.
  • Dans un repère orthonormé, la courbe représentative de la fonction exponentielle est la symétrique de la courbe représentative de la fonction logarithme népérien par rapport à la première bissectrice du repère.
  • ∀(a, b) ∈ R² , exp(a + b) = exp(a) × exp(b).
    • ∀x ∈ R, exp(x) > 0.
    • exp(0) = 1, exp(1) = e.
    • ∀x ∈ R, ln(exp(x)) = x.
    • ∀x ∈ R∗+, exp(ln(x)) = x.
    • ∀x ∈ R, exp(−x) = 1/exp(x).
    • ∀(x, y) ∈ R² , exp(x − y) = exp(x)/exp(y).
    • ∀x ∈ R, ∀n ∈ Z, [exp(x)]n = exp(nx).
    • ∀n ∈ Z, [exp(1)]n = exp(n) i.e : en = exp(n)

Cette dernière propriété s’étend à tous les nombres réels : ∀x ∈ R, ex = exp(x)

On peut donc récrire les propriétés précédentes à l’aide de cette notation :

Propriétés :
Soient a et b deux réels.

  • ea+b = ea × eb
  • ea−b = ea/eb
  • e−a = 1/ea
  • ∀n ∈ Z, (ea)n = ena

Définition
Soit a un réel strictement positif et b un réel quelconque, on pose :
ab = exp(b ln(a)) = eb ln(a)

On peut alors définir de nouvelles fonctions à partir de cette notation

Fonction exponentielle de base a

Définition
Soit a un nombre réel strictement positif.
La fonction f définie par : f(x) = exp(x ln a) est notée x → ax et est appelée fonction exponentielle de base a.
Df = R et f est continue et dérivable sur R.

Propriétés :

  • ∀x ∈ R, f'(x) = (ln a)ax.
    • Si a > 1 alors f est strictement croissante sur R.
    • Si a < 1 alors f est strictement décroissante sur R.
  • On obtient les limites de f aux bornes de l’ensemble de définition en utilisant les limites connues de la fonction exponentielle.
  • La fonction exponentielle de base a possède les mêmes propriétés algébriques que la fonction exponentielle.

Fonction logarithme décimal

Définition
La fonction logarithme décimal, notée log est définie par : log x = ln x/ln 10 .
Dlog = R∗+ et log est continue et dérivable sur R∗+.

Propriétés :

  • ∀x ∈ R∗+, log'(x) = 1/x ln(10) .
  • log est strictement croissante sur R∗+.
  • lim x→+∞ log(x) = +∞ et \lim x→0+ log(x) = −∞.
  • La fonction logarithme décimal possède les mêmes propriétés algébriques que la fonction logarithme népérien.
  • log est la bijection réciproque de la fonction exponentielle de base 10 sur R∗+, i.e : ∀x > 0, ∀y ∈ R, y = log x ⇐⇒ x = 10y

Remarque : cette fonction est notamment utilisée en chimie : pH = − log ( [H3O+] / c◦)

Fonctions puissances

Définition
Soit α un nombre réel.
La fonction f définie par : f(x) = xα = exp(α ln x) est appelée fonction puissance α.
Df = R∗+ et f est continue et dérivable sur R∗

Propriétés :

  • ∀x ∈ R∗+ , f'(x) = αxα−1.
  • Les variations de f dépendent de α, on les obtient facilement à l’aide de la dérivée de f.
  • Les limites de f aux bornes de son ensemble de définition dépendent aussi de α.
  • Lorsque α > 0, on peut prolonger la fonction puissance en 0 en posant 0α = 0, c’est le cas des fonctions x → x1/2 et x → x1/3 .
  • Les fonction puissances ont les mêmes propriétés algébriques que les fonctions exponentielles.

Exercice 1

Je pense à un nombre, je prends son triple, je retranche 30 et je trouve 3.
Quel est ce nombre ?

Correction

  1. Détermination de l'inconnue : on note x le nombre cherché.
  2. Mise en équation :
    • Le triple du nombre, c'est trois fois ce nombre, donc 3x.
    • Ensuite je retranche 30 et je trouve 3, donc    3x - 30 = 3.
  3. Résolution de l'équation :

3x - 30 = 3         On ajoute 30 à chaque membre de l'égalité.

3x = 3 + 30

3x = 33              On divise par 3 chaque membre de l'égalité.

x = 33/3

x = 11

Conclusion (réponse au problème donné) :

Le nombre cherché est 11.

Exercice 2

La longueur d'un rectangle vaut six fois sa largeur.

Si le périmètre du rectangle vaut 2800 mètres, quelle est sa longueur et sa largeur? Calculer alors l'aire du rectangle (cours de math).

Correction

  1. Détermination de l'inconnue : on note x la largeur du rectangle (on choisit la largeur car la longueur dépend de la largeur).
    • La longueur d'un rectangle vaut six fois sa largeur, donc elle vaut 6x.
  2. Mise en équation :
    • Le périmètre d'un rectangle vaut 2 longueurs + 2 largeurs, donc 2 x 6x + 2 x x.
    • L'équation est alors 2 x 6x + 2 x x = 2800.
  3. Résolution de l'équation :

2 x 6x + 2 x x = 2800

12x + 2x = 2800

14x = 2800           On divise par 14 chaque membre de l'égalité.

x = 2800/14

x = 200

Conclusion (réponse au problème donné) :

La largeur du rectangle est de 200 mètres.

La longueur du rectangle vaut alors 6 fois 200 mètres, c'est-à-dire 1200 mètres.

L'aire d'un rectangle est largeur x longueur, donc 200 x 1200 = 240 000 m².

L'aire de ce rectangle est 240 000 m².

Exercice 3

Une femme de 26 ans met au monde des triplés. Dans combien d'années l'âge de cette femme sera-t-il égal à la somme des âges des triplés?

Correction

  1. Détermination de l'inconnue : on note x le nombre d'années écoulées.
    • L'âge de la femme dans x années est donc 26 + x.
    • L'âge de chacun des triplés dans x années est x.
  2. Mise en équation :
    • La somme des âges des triplés est x + x + x, donc on obtient l'équation :
    • 26 + x = x + x + x
  3. Résolution de l'équation :

26 + x = x + x + x      On retranche x à chaque membre de l'égalité

26 = x + x

26 = 2x               On divise par 2 chaque membre de l'égalité.

26 / 2 = x

x = 13

Conclusion (réponse au problème donné) :

Dans 13 ans, l'âge de la mère sera égal à la somme des âges des triplés.

On peut vérifier : dans 13 ans, la mère aura 39 ans et chacun des triplés aura 13 ans. Or 13 + 13 + 13 = 39, ce qui correspond bien à l'âge de la mère.

Exercice 4

Un troupeau est composé de chameaux et de dromadaires. On compte 180 têtes et 304 bosses. Combien y a-t-il de chameaux et de dromadaires?

Correction

  1. Détermination de l'inconnue : on note x le nombre de chameaux.
    • Sachant qu'il y a 180 têtes, il y a donc 180 animaux.
    • On compte donc 180 - x dromadaires.
  2. Mise en équation :
    • Un chameau a deux bosses donc on compte au total 2 x x bosses sur les chameaux.
    • Un dromadaire n'a qu'une bosse donc on compte au total 180 - x bosses sur les dromadaires.
    • Il y a 304 bosses au total sur tous les animaux, donc on aboutit à l'équation suivante :
    • 2 x x + 180 - x = 304.
  3. Résolution de l'équation :

2x + 180 - x = 304

x + 180 = 304          On retranche 180 à chaque membre de l'égalité.

x = 304 - 180

x = 124

Conclusion (réponse au problème donné) :

On compte 124 chameaux dans ce troupeau.

180 - 124 = 56

On compte également 56 dromadaires dans ce troupeau.

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 4.00 (36 note(s))
Loading...

Olivier

Professeur en lycée et classe prépa, je vous livre ici quelques conseils utiles à travers mes cours !