Les meilleurs professeurs de Physique - Chimie disponibles
Chris
5
5 (456 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Houssem
5
5 (197 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4.9
4.9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chris
5
5 (456 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Houssem
5
5 (197 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4.9
4.9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

Introduction

Qu'apprend-t-on en classe préparatoire ?
En PCSI sont étudiés les phénomènes d’interférences par superposition de deux ondes sinusoïdales de même pulsation : ondes mécaniques (cuve à onde) et ondes sonores dans l’air. Dans ce chapitre le but est d’étudier de façon théorique ce phénomène d’interférences avec des ondes lumineuses pour mettre en évidence leur spécificités.

La lumière est une onde lumineuse constituée de particules : les photons. Une particule est dite subatomique quand elle est de taille inférieure à celle de l'atome et notamment du noyau. On analyse ces éléments dans la physique des particules. L'atmosphère, les nuages, le sol ou les océans reçoivent la lumière solaire. Ils renvoient une partie de cette lumière dans toutes les directions : on dit qu'ils diffusent la lumière. La lumière est un élément essentiel à la vie. En effet, elle est nécessaire à la photosynthèse, et elle permet aux êtres vivants de refaire des réserves en vitamine D, nécessaire à la vie. La Lune, les planètes, les comètes et tous les corps du système solaire, sont éclairés par le Soleil. Ils sont visibles car leur surface diffuse une partie de la lumière solaire. Les photographes utilisent des écrans diffusant pour obtenir un éclairage sans ombre sur le sujet. Les planètes, les nuages, les écrans diffusant sont des objets lumineux qui ne produisent pas de lumière. Ils diffusent la lumière qu'ils reçoivent : ce sont des sources secondaires de lumière.

Une onde est une déformation ou une vibration qui se propage dans un milieu défini. Il existe trois types différents d’ondes :

  • Mécanique : Les ondes magnétiques nécessitent une matière qui se déforme afin de se propager. Ce matériau a la capacité recouvrer son état initial grâce aux forces de restauration qui inversent la déformation.
  • Électromagnétique : Les ondes électromagnétiques quant à elles n’ont pas besoin de support pour se déplacer : elles correspondent à des oscillation périodiques de champs électriques et magnétiques qui peuvent alors se déplacer dans le vide.
  • Gravitationnelle : Les ondes gravitationnelles n’ont plus de support pour se déplacer puisque ce sont les déformations de la géométrie de l’espace-temps qui se propagent.

La propagation d'une onde

La mise en mouvement peut être impactée par le milieu des particules.

Une onde se propage dans un milieu qui le lui permet car la propagation résulte de la mise en mouvement d’une particule dans le temps mais aussi dans l’espace par rapport au milieu. Cela est possible uniquement si la source est dans un état vibratoire.

On peut caractériser la propagation d’une onde par sa vitesse de propagation à l’aide la formule suivante : Avec :

  • c la célérité de l’onde ;
  • λ la longueur d’onde ;
  • f la fréquence de l’onde.

Remarque : La vitesse de la lumière est de 300 000 km.s-1 et la célérité d’une onde sonore est de 344 m.s-1

Où trouver des cours de physique en ligne ?

Le cas de l'onde sonore

Quelle est la différence entre la lumière et le son ?
Les ondes sonores et les ondes lumineuses ne se propagent pas de la même manières. En effet, le son ne peut pas se propager dans l'espace.

Lorsque l'onde se propage dans un milieu fluide compressible, il est possible d'observer une variation de pression qui va alors se propager sous la forme d'une onde. L'air nous entourant étant un milieu fluide compressible, il est alors possible de ressentir ces ondes sous la forme de son que l'on perçoit grâce aux tympans.

Cependant, pour qu'elle soit perceptible, il faut que la variation de pression, parce que son amplitude est faible par rapport à la pression atmosphérique, soit suffisamment rapide et répétée. Il est possible de considérer tout objet vibrant, tel qu'un instrument de musique ou encore un haut-parleur, comme étant une source sonore qui est donc, comme son nom l'indique, la source des vibration de l'air.

La perturbation va alors se propager, même si les particules oscillent très peu (soit quelques micromètres autour d'une position stable), d'une façon analogue aux perturbations de l'eau lorsqu'une pierre y tombe : on peut observer des vagues qui s'éloignent peu à peu du point de perturbation bien que l'eau reste au même endroit. En effet, l'eau ne se déplace que verticalement et ne suit pas les vagues (il est possible d'observer ce phénomène en plaçant un objet flottant près de la perturbation : il ne restera à la même position).

On peut alors dire que, dans les fluides, l'onde sonore correspond à une onde longitudinale. Ainsi, les particules observées vibrent de façon parallèle à la direction de déplacement de l'onde. Une onde sonore peut également être transmise par un solide vibrant. En effet, la vibration va se propager au sein du solide comme dans les fluides : il y aura de faibles oscillation autour de la position d'équilibre des atomes constituant le solide.

La conséquence est alors une contrainte du matériau qui, équivalente à la pression dans un fluide, est très difficile à mesurer. C'est donc la rigidité du matériau qui permettra la transmission des ondes de contraintes transversales. Il peut être intéressant de noter que, la vitesse de propagation du son, également appelée célérité, varie selon différentes propriétés du milieu comme :

  • La nature du milieu ;
  • La température du milieu ;
  • Et la pression du milieu.

Ainsi, dans un gaz parfait, on peut obtenir la vitesse de propagation d'une onde sonore avec la relation suivante : Avec :

  • ρ correspondant à la masse volumique du gaz ;
  • Et χS correspondant à la compressibilité isentropique du gaz.

Il est également possible d'observer une diminution de la vitesse du son lorsque :

  • La densité du gaz augmente, on appelle cela l'effet d'inertie ;
  • La compressibilité du gaz, c'est à dire sa capacité à changer de volume selon la pression qu'il subit, augmente.

Pour calculer la vitesse du son dont l'unité est, rappelons-le, le mètre par seconde, il est possible d'utiliser l'expression suivante : avec T la température en degré Celsius. Mais il est possible d'être plus précis en utilisant les degrés Kelvin. On doit alors se servir de l'expression suivante : Notons que, de façon générale, la vitesse du son dans l'eau est de 1 500 m.s-1. Mais il existe de nombreux milieux où les ondes sonores peuvent se propager de façon encore plus rapide. On peut alors prendre l'exemple de l'acier au sein duquel les ondes se propage une vitesse comprise entre 5 600 et 5 900 m.s-1. Cependant, une onde sonore est incapable de se propager dans le vide puisqu'il faut nécessairement la présence de matière déformable pour que la vibration puisse se propager.

Besoin d'un prof physique chimie ?

Le décibel

Le décibel, en acoustique environnementale, permet d'indiquer le niveau de bruit. En effet, cette grandeur permet d'exprimer le rapport de puissance existant enter la pression acoustique et une valeur de référence qui a été choisie comme correspondant à un son imperceptible. D'une façon générale, le niveau sonore en champ libre, ce qui signifie sans obstacle sur le trajet de l'onde, est inversement proportionnel au carré de la distance, c'est-à-dire à la distance multipliée par elle-même.

Comment trouver un professeur de sciences physiques ?

La pression acoustique

La pression acoustique correspond à une grandeur physique qui stimule l'audition humaine. La plage de pression qui donne un niveau sonore perceptible par l'Homme est comprise entre un rapport de un et plusieurs millions. Attention cependant, la percepteur du volume sonore est, de façon approximative, logarithmique. Cela signifie alors qu'une augmentation définie du volume correspondra à multiplier la pression par un facteur qui est identique. C'est pourquoi on ne convertit que très rarement la mesure du bruit, qui est de façon générale, correspondant à la pression acoustique en décibel.

L'intensité acoustique

Afin de déterminer les chemins de propagation des sons dans un environnement, les études acoustiques utilisent fréquemment l'intensité acoustique. Cette grandeur correspond à la représentation de la puissance acoustique qui est transmise dans une direction définie. S'établissant généralement à partir d'un gradient de pression, on utilise logiquement un réseau de capteurs ou encore en ensemble de capteurs de vitesse acoustiques que l'on couple à un capteur de pression. Attention toutefois aux confusions. En effet, parler d'une intensité acoustique n'induit pas toujours que l'on parle d'un niveau sonore. Il suffit pour démontrer cela de prendre l'exemple d'une onde stationnaire : son intensité est nulle alors que la pression acoustique ne l'est pas et l'on entend pourtant un son.

Une onde dite stationnaire correspond à la propagation simultanée et dans des sens opposés de plusieurs ondes de même fréquence et de même amplitude dans un même milieu. Ainsi, on observera une figure dont certains points sont fixes, appelés nœuds de pression, dans le temps. Il est alors possible d’observer une vibration stationnaire et d’intensité différente en chaque point observé au lieu de pouvoir observer une onde qui se propage.

La puissance acoustique

Afin de comparer deux sources de bruit, il est nécessaire d'utiliser la puissance acoustique qui s'exprime en dB SWL. Il est possible d'obtenir la valeur de cette grandeur en plaçant la source que l'on souhaite tester dans une chambre réverbérante afin que les sons soient mélangés dans toutes les directions. Mais il est également possible d'obtenir cette valeur en effectuant une série de mesures tout autour de la source sonore à tester.

L'onde lumineuse

L'onde électromagnétique, lorsqu'elle se trouve dans un milieu homogène et isotrope, va se propager en ligne droite et subir une diffraction lorsqu'elle va rencontrer un obstacle et subir la réflexion et la réfraction lorsqu'elle va changer de milieu.

Comportement de l'onde lumineuse

La réfraction est le changement de direction que subit un rayon lumineux lorsqu'il traverse la surface de séparation entre deux milieux transparents.

L'indice d'un milieu

Un milieu transparent est caractérisé par son indice de réfraction. L'indice de réfraction d'un milieu transparent correspond au rapport entre la célérité d'une onde se propageant dans le vide et sa célérité dans le milieu considéré. Avec

  • n correspondant à l'indice de réfraction du milieu transparent et qui est une grandeur sans unité ;
  • c correspondant à la célérité de l'onde dans le vide. La célérité est égale à 3.10m.s-1 ;
  • Et v correspondant à la célérité de l'onde dans le milieu transparent qui s'exprime en m.s-1.

Un milieu est dit dispersif si la célérité d'une onde lumineuse monochromatique qui se propage dans ce milieu dépend de sa fréquence (donc de sa longueur d'onde dans le vide). L'indice de réfraction d'un milieu dispersif dépend donc de la fréquence de l'onde qui s'y propage.

La loi de Descartes

Cette loi lie les indices de réfraction (n1 et n2), l'angle d'incidence (i1) et l'angle de réfraction (i2). Elle s'exprime par la relation suivante :

Définition : La réfraction de la lumière correspond au changement de direction du rayon lumineux lorsque celui-ci traverse une surface séparant deux milieux d'indices de réfraction différents.

En effet, la loi de Snell-Descartes de la réfraction exprime le changement de direction d'un faisceau lumineux lors de la traversée d'une paroi qui sépare deux milieux différents. Il faut d'abord savoir que chaque milieu est caractérisé par sa capacité à « ralentir » la lumière. On modélise cette caractéristique par son indice de réfraction n qui s'exprime sous la forme : v est la vitesse de la lumière dans ce milieu et c est la vitesse de la lumière dans le vide (souvent arrondie à 3.108 m.s-1 Il est important de savoir que :

  • Le rayon lumineux est dit incident avant d'avoir rencontré la surface réfractante (appelée dioptre), il est dit réfracté après avoir rencontré cette dernière.
  • Le point de rencontre du rayon incident et du dioptre est appelé point d'incidence.
  • Le plan contenant le rayon incident et la normale au dioptre, au point d'incidence est dit plan d'incidence.
  • L'angle orienté i1 pris entre la normale au point d'incidence et le rayon incident est dit angle d'incidence.
  • L'angle orienté i2 pris entre la normale au point d'incidence et le rayon réfracté est dit angle de réfraction.
  • Les angles i1 et i2 sont positifs s’ils sont orientés dans le sens trigonométrique (sens inverse des aiguilles d'une montre), négatifs sinon.

On prend n1 l'indice de réfraction du milieu dans lequel se propage le rayon incident et n2 celui du milieu dans lequel se propage le rayon réfracté. Pour pouvoir énoncer la loi de la réfraction, il faut que le rayon réfracté, le rayon incident et la normale (au dioptre) soient dans un même plan qui est appelé le plan d'incidence et que le rayon incident et le rayon réfracté soient situés de part et d'autre de la normale. Lorsque n> n2 (et respectivement n< n2) le rayon réfracté (et respectivement : incident) se rapproche plus rapidement du dioptre que le rayon incident (ou réfracté). Cependant, il existe un cas particulier où le rayon réfracté (ou incident) se retrouve mathématiquement sur le dioptre (sa limite) : il y a alors réflexion totale.

Exemple : la réfraction atmosphérique

La réfraction atmosphérique correspond à la déviation des faisceaux lumineux par des superposition de couchers d'air ayant des températures différentes. On se trouve alors dans le cas d'une propagation anormale de la lumière au sein d'une atmosphère dans laquelle la température, la pression ainsi que l'humidité restent constante verticalement selon la normale. Ainsi, la déviation des rayons lumineux peuvent donner l'impression que l'objet observé se situe autre que sa localisation réelle. De ce fait, il serait incorrect de définir un mirage comme une illusion d'optique ou encore comme une hallucination : il est possible de photographier un mirage ! En effet, il s'agit plutôt d'une déformation mentale d'une image provoquée par une interprétation fausse du cerveau.

Superposition de deux ondes sinusoïdales

Conditions d'interférences lumineuses, formule de Fresnel

Égalité des pulsations

  • Soit un point de l'espace où parviennent deux ondes lumineuses sinusoïdales :
    • Les vibrations s'ajoutent (principe de superposition du champ électrique).
    • Les intensités ne s'ajoutent pas à priori.
  • Si les intensités de chaque onde s'ajoutent en chaque point de l'espace où les ondes se superposent, on dit qu'il n' y a pas interférences.
  • Si les intensités de chaque onde ne s'ajoutent pas en chaque point de l'espace où les ondes se superposent, on dit qu'il y a interférences. On observe alors des variations d'intensité dans l'espace.
  • Première condition d’interférences (valable pour tout type d’onde !) : égalité des deux pulsations.

Remarque

cette condition est suffisante pour des ondes rigoureusement sinusoïdales (sinusoïdes illimitées dans le temps) ce qui est possible par exemple pour des ondes mécaniques ou sonores (voir expériences menées en PCSI !).

Cohérence des sources lumineuses

  • Dans la pratique, deux ondes lumineuses de même pulsation issues de deux sources distinctes n'interfèrent pas : en effet, le déphasage entre les deux ondes varie de façon aléatoire (à cause de l’émission par trains d’onde) et son cosinus a une valeur moyenne nulle sur le temps de réponse du récepteur (>>durée d’un train d’onde).

Les sources (ou les ondes) sont dites incohérentes.

Quand on superpose deux ondes incohérentes, leurs intensités en un point s’ajoutent : il n’y a pas d’interférences.

  • Pour obtenir deux sources cohérentes, entre lesquelles le déphasage reste constant, on crée deux sources ponctuelles à partir d'une source monochromatique à l’aide d’un diviseur d’onde : elles émettent donc des ondes de même pulsation, des trains d'ondes identiques, le déphasage entre les deux ondes émises est alors constant.
  • Deux sources cohérentes créent des interférences en tout point où deux trains d'onde secondaires issus d’un même train d’onde primaire se superposent : l’écart entre les deux délais de propagation (de la source primaire à M par les deux trajets) ne doit pas dépasser la durée de cohérence (ce point sera complété dans la suite du cours).

Figure d’interférence, contraste

Franges sombres et brillantes

  • Pour observer les interférences, on place un écran dans la zone où les ondes issus des sources secondaires se superposent : comme le déphasage varie avec M, I varie avec M donc on obtient une figure d’interférences constituée de franges sombres et brillantes.
  • Une frange brillante est une courbe regroupant des points d'intensité maximale.

En tout point d'une frange brillante, les ondes qui interfèrent sont en phase.

  • Une frange sombre est une courbe regroupant des points d'intensité minimale.

En tout point d'une frange sombre, les ondes qui interfèrent sont en opposition de phase.

Contraste

  • Définition : contraste C = (Imax - Imin) / (Imax + Imin)
  • Conséquence : I(M) = Imoyen[1+C.cos(Δφ)] avec C > 0
  • Le contraste est maximal et égal à 1 lorsque deux ondes de même amplitude (donc I1 et I2 proches) interfèrent. A l'oeil, les franges sombres sont noires d'où l'impression d'un fort contraste.
  • Le contraste est nul lorsque l'une des deux ondes a une amplitude nulle : l'éclairement est uniforme.

Différence de marche, ordre d’interférence

  • Le déphasage entre deux ondes qui interfèrent en un point de l'espace provient du retard dû à la propagation depuis la source et éventuellement à certaines réflexions (voir cours sur les ondes). On l'exprime en fonction de la différence de marche δ, c'est à dire la différence des chemins optiques.
  • Ordre d'interférence p : p(M)=δ(M)/λ

L’ordre est un réel. Le signe de p dépend d'un choix arbitraire dans la définition de δ(M).

  • En tout point M d'une frange brillante,  δ(M)=kλ , k entier relatif et l’ordre est un entier.
  • En tout point M d'une frange sombre,  δ(M) = (2k+1)λ/2 , k entier relatif et l’ordre est demi-entier.
Comment réussir ses exercices à la maison ?
Il est essentiel de comprendre ces notions pour la poursuite de vos études.

Superposition de N ondes lumineuses sinusoïdales cohérentes

Position du problème

On superpose en un point M un très grand nombre N d’ondes sinusoïdales cohérentes de même amplitude dont les phases sont en progression arithmétique.

Profil d’intensité

  • Le profil d’intensité est admis. Il n’est pas sinusoïdal comme pour N=2.
  • La finesse des pics augmente quand N augmente. Ils sont très fins pour N>100 (cas des réseaux !)

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 4.00 (2 note(s))
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !