Les meilleurs professeurs de Physique - Chimie disponibles
Chris
5
5 (483 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Houssem
5
5 (174 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Greg
5
5 (334 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (137 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chris
5
5 (483 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Houssem
5
5 (174 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Greg
5
5 (334 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (137 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

Les essentiels sur les ondes

Une onde est une déformation ou une vibration qui se propage dans un milieu défini.

Il existe trois types différents d’ondes :

  • Mécanique : Les ondes magnétiques nécessitent une matière qui se déforme afin de se propager. Ce matériau a la capacité recouvrer son état initial grâce aux forces de restauration qui inversent la déformation.
  • Électromagnétique : Les ondes électromagnétiques quant à elles n’ont pas besoin de support pour se déplacer : elles correspondent à des oscillation périodiques de champs électriques et magnétiques qui peuvent alors se déplacer dans le vide.
  • Gravitationnelle : Les ondes gravitationnelles n’ont plus de support pour se déplacer puisque ce sont les déformations de la géométrie de l’espace-temps qui se propagent.

La lumière

La lumière est une onde lumineuse constituée de particules : les photons.

Une particule est dite subatomique quand elle est de taille inférieure à celle de l'atome et notamment du noyau. On analyse ces éléments dans la physique des particules.

L'atmosphère, les nuages, le sol ou les océans reçoivent la lumière solaire. Ils renvoient une partie de cette
lumière dans toutes les directions : on dit qu'ils diffusent la lumière.

La lumière est un élément essentiel à la vie. En effet, elle est nécessaire à la photosynthèse, et elle permet aux êtres vivants de refaire des réserves en vitamine D, nécessaire à la vie.

La Lune, les planètes, les comètes et tous les corps du système solaire, sont éclairés par le Soleil. Ils sont visibles car leur surface diffuse une partie de la lumière solaire.

Les photographes utilisent des écrans diffusant pour obtenir un éclairage sans ombre sur le sujet. Les planètes, les nuages, les écrans diffusant sont des objets lumineux qui ne produisent pas de lumière. Ils diffusent la lumière qu'ils reçoivent : ce sont des sources secondaires de lumière.

Tout savoir sur la propagation des ondes

Une onde se propage dans un milieu qui le lui permet car la propagation résulte de la mise en mouvement d’une particule dans le temps mais aussi dans l’espace  par rapport au milieu. Cela est possible uniquement si la source est dans un état vibratoire.

Peut-on entende du bruit dans l'espace ?
Les ondes mécaniques, dont le son, ont besoin d'un milieu matériel pour se propager. C'est pourquoi il n'y a aucun son dans le vide de l'espace.

On peut caractériser la propagation d’une onde par sa vitesse de propagation à l’aide la formule suivante :

\[ c = \lambda \times f \]

Avec :

  • c la célérité de l’onde ;
  • λ la longueur d’onde ;
  • f la fréquence de l’onde.

Remarque : La vitesse de la lumière est de 300 000 km.s-1 et la célérité d’une onde sonore est de 344 m.s-1

La fréquence d'une onde ne dépend que de la fréquence de la source mais ne dépend pas de la fréquence de l'onde.

La célérité d'une onde v dépend du milieu de propagation.

  • Elle est toujours inférieure à celle de cette onde dans le vide c . v < c .
  • n est toujours inférieur à 1 . n < 1

Dans le vide, la célérité de la lumière est c = 299 792 458 m.s-1 (on retiendra c = 3.108 m.s-1).

La célérité de la lumière dans le vide ne dépend pas de la fréquence de l'onde.

La célérité de la lumière dans l'air est pratiquement égale à sa célérité dans le vide.

La propagation de l'onde sonore

En physique chimie cours, le son correspond a une vibration mécanique d'un fluide qui va alors se propager, grâce à la déformation élastique du fluide, en prenant la forme d'ondes longitudinales. Les Hommes, mais également beaucoup d'autres animaux, peuvent ressentir cette vibration grâce au sens que nous appelons : l'ouïe. On peut alors dire que le son correspond à une onde mécanique progressive.

Une onde mécanique progressive correspond a un phénomène de perturbation locale dans un milieu matériel. Ainsi, pour une onde mécanique, on ne peut observer de déplacement de matière mais un transport d’énergie.

Les ondes sonores audibles sont caractérisées par des fréquences allant de 20 Hz à 20 kHz, ce qui correspond à des longueurs d'onde allant de 0,017 m à 17 m.

Un onde se propage dans un milieu qui le lui permet car la propagation résulte de la mise en mouvement d’une particule dans le temps mais aussi dans l’espace  par rapport au milieu. Cela est possible uniquement si la source est dans un état vibratoire.

On peut caractériser la propagation d’une onde par sa vitesse de propagation à l’aide la formule suivante :

\[ c = \lambda \times f \]

Avec :

  • c la célérité de l’onde ;
  • λ la longueur d’onde ;
  • f la fréquence de l’onde.

Remarque : La vitesse de la lumière est de 300 000 km.s-1 et la célérité d’une onde sonore est de 344 m.s-1

Lorsque l'onde se propage dans un milieu fluide compressible, il est possible d'observer une variation de pression qui va alors se propager sous la forme d'une onde. L'air nous entourant étant un milieu fluide compressible, il est alors possible de ressentir ces ondes sous la forme de son que l'on perçoit grâce aux tympans. Cependant, pour qu'elle soit perceptible, il faut que la variation de pression, parce que son amplitude est faible par rapport à la pression atmosphérique, soit suffisamment rapide et répétée.

Il est possible de considérer tout objet vibrant, tel qu'un instrument de musique ou encore un haut-parleur, comme étant une source sonore qui est donc, comme son nom l'indique, la source des vibration de l'air. La perturbation va alors se propager, même si les particules oscillent très peu (soit quelques micromètres autour d'une position stable), d'une façon analogue aux perturbations de l'eau lorsqu'une pierre y tombe : on peut observer des vagues qui s'éloignent peu à peu du point de perturbation bien que l'eau reste au même endroit. En effet, l'eau ne se déplace que verticalement et ne suit pas les vagues (il est possible d'observer ce phénomène en plaçant un objet flottant près de la perturbation : il ne restera à la même position).

On peut alors dire que, dans les fluides, l'onde sonore correspond à une onde longitudinale. Ainsi, les particules observées vibrent de façon parallèle à la direction de déplacement de l'onde.

Une onde sonore peut également être transmise par un solide vibrant. En effet, la vibration va se propager au sein du solide comme dans les fluides : il y aura de faibles oscillation autour de la position d'équilibre des atomes constituant le solide. La conséquence est alors une contrainte du matériau qui, équivalente à la pression dans un fluide, est très difficile à mesurer. C'est donc la rigidité du matériau qui permettra la transmission des ondes de contraintes transversales.

Il peut être intéressant de noter que, la vitesse de propagation du son, également appelée célérité, varie selon différentes propriétés du milieu comme :

  • La nature du milieu ;
  • La température du milieu ;
  • Et la pression du milieu.
Quelle est l'incidence de la température sur la propagation des ondes ?
La température du milieu dans lequel se propagent les ondes sonores ont une influence sur la célérité de ces dernières.

Ainsi, dans un gaz parfait, on peut obtenir la vitesse de propagation d'une onde sonore avec la relation suivante :

\[ c = \frac  { 1 } { \sqrt { \rho \chi _{S} } } \]

Avec :

  • ρ correspondant à la masse volumique du gaz ;
  • Et χS correspondant à la compressibilité isentropique du gaz.

Il est également possible d'observer une diminution de la vitesse du son lorsque :

  • La densité du gaz augmente, on appelle cela l'effet d'inertie ;
  • La compressibilité du gaz, c'est à dire sa capacité à changer de volume selon la pression qu'il subit, augmente.

Pour calculer la vitesse du son dont l'unité est, rappelons-le, le mètre par seconde, il est possible d'utiliser l'expression suivante : \[ c _ { \text { air } } = 330 + 0,6 \times T \] avec T la température en degré Celsius.

Mais il est possible d'être plus précis en utilisant les degrés Kelvin. On doit alors se servir de l'expression suivante : \[ c _ { \text { air } } = 20 \times \sqrt { T } \]

Notons que, de façon générale, la vitesse du son dans l'eau est de 1500 m.s-1. Mais il existe de nombreux milieux où les ondes sonores peuvent se propager de façon encore plus rapide. On peut alors prendre l'exemple de l'acier au sein duquel les ondes se propage une vitesse comprise entre 5 600 et 5 900 m.s-1.

Cependant, une onde sonore est incapable de se propager dans le vide puisqu'il faut nécessairement la présence de matière déformable pour que la vibration puisse se propager.

L'onde face à un nouveau milieu

Phénomène de diffraction

C'est un phénomène qui est propre aux ondes qui se manifestent lorsqu'une onde rencontre un obstacle ou une ouverture de faible dimension.

La modification de la forme d'onde on obtient des ondes circulaires. L'onde se propage derrière l'obstacle, il n'y a pas de zone d'ombre.

Le phénomène de diffraction se manifester lorsqu'une onde rencontre une ouverture, obstacle, dont les dimensions sont du même ordre de sa longueur d'onde. Ce phénomène est d'autant plus marqué que a est petit.

Propagation d'une onde face à un obstacle

Comment réagit la lumière dans une fente ?
La lumière qui passe par un fente prends des propriétés spécifiques de réflexion et de diffraction. C'est ce qu'expliquent les fentes d'Young.

On appelle fentes, ou interférences, de Young toute expérience consistant à faire interférer deux faisceaux de lumière qui sont issus d'une même source. Cette interférence est produite grâce au passage de la lumière dans deux petits trous qui auront été percé au sein d'un plan opaque. On observe alors pour résultat, sur un écran disposé face à ces fentes, un motif de diffraction représenté par une zone où des franges sombres et des franges illuminées sont disposées en alternance.

Cette expérience permet ainsi de mettre en lumière la nature ondulatoire des ondes électromagnétiques. Lorsque cette même expérience est réalisée avec de la matière, comme des atomes, des molécules ou des électrons, il est possible d'observer ce même comportement. On peut ainsi observer la dualité onde-particule puisque les interférences permettent de montrer que la matière présente également un comportement ondulatoire bien que les impact sur l'écran démontre un comportement particulaire

Dispersion des ondes

Un milieu est dispersif pour les ondes si la vitesse de propagation de l'onde dans le milieu dépend de sa fréquence de dispersion.

Remarque : L'air n'est pas un milieu dispersif pour les ondes sonores car les sons graves et aigus (leur fréquence) s'y propagent à la même vitesse.

Remarque : L'eau est un milieu dispersif pour les ondes à la surface de l'eau.

La réfraction

L'indice de réfraction

Un milieu transparent est caractérisé par son indice de réfraction. L'indice de réfraction d'un milieu transparent correspond au rapport entre la célérité d'une onde se propageant dans le vide et sa célérité dans le milieu considéré. \[ n = \frac { c } { v } \] Avec

  • n correspondant à l'indice de réfraction du milieu transparent et qui est une grandeur sans unité ;
  • c correspondant à la célérité de l'onde dans le vide. La célérité est égale à 3.10m.s-1 ;
  • Et v correspondant à la célérité de l'onde dans le milieu transparent qui s'exprime en m.s-1.

Un milieu est dit dispersif si la célérité d'une onde lumineuse monochromatique qui se propage dans ce milieu dépend de sa fréquence (donc de sa longueur d'onde dans le vide). L'indice de réfraction d'un milieu dispersif dépend donc de la fréquence de l'onde qui s'y propage.

La loi de Snell-Descartes

Comment fonctionne un prisme ?
Un prisme est un objet qui diffuse la lumière en la divisant. C'est ainsi que l'on peut voir apparaître facilement les différentes couleurs de la lumière blanche. Quand vous voyez un arc en ciel, c'est en réalité la lumière blanche du soleil qui a été diffractée.

Définition : La réfraction de la lumière correspond au changement de direction du rayon lumineux lorsque celui-ci traverse une surface séparant deux milieux d'indices de réfraction différents.

En effet, la loi de Snell-Descartes de la réfraction exprime le changement de direction d'un faisceau lumineux lors de la traversée d'une paroi qui sépare deux milieux différents. Il faut d'abord savoir que chaque milieu est caractérisé par sa capacité à « ralentir » la lumière.

On modélise cette caractéristique par son indice de réfraction n qui s'exprime sous la forme :
\[ n = \frac { c } { v } \]

v est la vitesse de la lumière dans ce milieu et c est la vitesse de la lumière dans le vide (souvent arrondie à 3.108 m.s-1

Il est important de savoir que :

  • Le rayon lumineux est dit incident avant d'avoir rencontré la surface réfractante (appelée dioptre), il est dit réfracté après avoir rencontré cette dernière.
  • Le point de rencontre du rayon incident et du dioptre est appelé point d'incidence.
  • Le plan contenant le rayon incident et la normale au dioptre, au point d'incidence est dit plan d'incidence.
  • L'angle orienté i1 pris entre la normale au point d'incidence et le rayon incident est dit angle d'incidence.
  • L'angle orienté i2 pris entre la normale au point d'incidence et le rayon réfracté est dit angle de réfraction.
  • Les angles i1 et i2 sont positifs si ils sont orientés dans le sens trigonométrique (sens inverse des aiguilles d'une montre), négatifs sinon.

On prend n1 l'indice de réfraction du milieu dans lequel se propage le rayon incident et n2 celui du milieu dans lequel se propage le rayon réfracté.

Pour pouvoir énoncer la loi de la réfraction, il faut que le rayon réfracté, le rayon incident et la normale (au dioptre) soient dans un même plan qui est appelé le plan d'incidence et que le rayon incident et le rayon réfracté soient situés de part et d'autre de la normale.

Lorsque n> n2 (et respectivement n< n2) le rayon réfracté (et respectivement : incident) se rapproche plus rapidement du dioptre que le rayon incident (ou réfracté). Cependant, il existe un cas particulier où le rayon réfracté (ou incident) se retrouve mathématiquement sur le dioptre (sa limite) : il y a alors réflexion totale.

Exemples de TP

La diffraction

Exploitation du TP, figure de diffraction :

Soient D la distance entre le fil/la fente et la tache sur le papier (représentée en rouge sur le schéma 1), d est la longueur de la plus grosse tache sur le papier (celle du milieu) et a la taille de l’ouverture ou de l’obstacle. La longueur d’onde du laser est de 670 nanomètre.

Ici nous avons a qui est égal à 50 micromètre, D vaut 1,80 m et d = 4,8 cm .

Nous voulons trouver l’angle θ, nous utilisons pour cela une propriété du triangle rectangle :

Tan θ = Coté opposé / coté adjacent .

Tan θ= (d/2)/D

= d/(2D)

= 0,048 / (2*1,80)

= 0,013

 

A retenir : Tan θ= d /(2D)

 

Influence de a :

Quand a diminue la tache augmente (d), a et d sont inversement proportionnelles .

d= k * 1/a   (k = coefficient directeur)

k = 0.048 / 20000 = 2,4*10^-6

Nous pouvons aussi calculer la coefficient directeur (k) en utilisant la longueur d’onde λ :

K = 2 * D * λ

K = 2 * 1,80 * 67*10^-9

K = 2,41*10^-6

Conclusion : d = 2*D*λ*1/a

Relation entre θ et λ :

Θ = d/(2D) = (2Dλ)/(2Da) = λ/a

Θ = λ

a

La lumière est une onde

L’onde lumineuse est une onde électromagnétique.(elle n’a pas besoin de milieu matériel pour se propager) : Elle peut donc se propager dans le vide .

Sa vitesse est de C0= 3*10^8 m/s et est égale a λ * f ou λ/T

Ce tableau récapitule les différentes ondes et leur longueurs associées :

Type d'ondesRayons XRayons U.V.Ondes visibles par l'HommeRayons I.R.Micro ondesOndes radio
Longueur d'onde (en nm)Entre 10-14 et 10-12Entre 10-10 et 10-8A partir de 10-6Entre 10-6 et 10-3Entre 10-3 et 10-1Au dessus de 10-1

Propagation d’une onde dans un milieu transparent

Indice de réfraction :

L’indice de réfraction ni= c0/ci

Remarque : L’indice de réfraction dans le vide est égale à n0 = C0/C0 = 1

Ce tableau présente les indices de réfraction ainsi que les vitesse de propagation des ondes dans certains milieux :

 EauAlcoolVerreDiamant
n1,331,361,502,42
V (en m.s-1)2,26 x 1082,20 x 1082,00 x 1081,23 x 108

Réfraction

Loi des plans : Les rayons incidents, réfléchi et réfracté sont tous dans un même plan.

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00 (1 note(s))
Loading...

Clément

Freelancer et pilote, j'espère atteindre la sagesse en partageant le savoir que j'ai acquis lors de mes voyages au volant de ma berline. Curieux scientifique, ma soif de découverte n'a d'égale que la durée de demie-vie du bismuth 209.