Les meilleurs professeurs de Physique - Chimie disponibles
Chris
5
5 (483 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Houssem
5
5 (174 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Greg
5
5 (334 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (137 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chris
5
5 (483 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Houssem
5
5 (174 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Greg
5
5 (334 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (137 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

Introduction

Comment apprendre les bases de la physiques ?
Avant d'aller plus loin, concentrons nous sur certaines informations essentielles.

Un élément chimique (ou élément) est un ensemble d'atomes qui ont le même nombre de protons dans leur noyau. Ce nombre est le numéro atomique de l'élément. Ce terme désigne également une substance pure constituée d'atomes ayant le même nombre de protons. Un élément chimique peut se transformer en un autre élément par une réaction nucléaire. Cette définition moderne fut introduite par Robert Boyle en 1661. En effet, une réaction chimique met en jeu les liens entre les électrons externes des atomes, alors qu'une réaction nucléaire modifie les nucléons du noyau atomique. Chaque atome a des propriétés chimiques différentes qui dépendent directement du nombre atomique. Ces éléments sont répertoriés dans un tableau périodique inventé par Mendeleïev et nommé le tableau périodique des éléments. On en connait actuellement 117 (de 1 à 118 excepté le 117) dont 94 présents à l'état naturel sur Terre.

Le terme de réaction nucléaire désigne la transformation d'un ou plusieurs noyaux atomiques. Une réaction chimique, au contraire, concerne uniquement les électrons ou les liaisons entre les atomes.

Dans une réaction nucléaire, deux noyaux atomiques entrent en collision ; les produits résultants de cette collision sont différents des particules originelles. Dans le cas de la radioactivité, la transformation est spontanée, mais dans le cas d'une réaction nucléaire, elle est produite par une particule mouvante. Si les particules se séparent après la collision sans être transformées, le processus n'est pas une réaction, mais une collision élastique.

L'atome

Comment a-t-on découvert l'atome ?
L'atome a une structure particulière, les scientifiques sont passés par différents stades avant d'arriver à décrire celle-ci. Le noyau d'un atome est constitué de protons et de neutrons, il est donc électriquement positif. Ce noyau est entouré d'électrons qui gravitent autour de celui-ci, la partie la plus extérieure de l'atome est donc électriquement positif. Dans le cas d'un atome, ces deux parties électriques se compensent et donnent un atome électriquement neutre, ce n'est pas forcément le cas pour les ions. Ces deux parties sont séparées par du vide. En effet, on dit souvent de l'atome qu'il a une structure lacunaire. De plus, la taille du noyau est très petite comparé à celle de l'atome entier.

Imaginez un banc de sable vu de loin, on ne peut pas distinguer les grains qui le constitue. On peut les voir seulement en s'approchant de très près.
La matière qui nous entoure est également constituée de petits grains de matière appelés atomes, ils ne peuvent être observés ni à l'oeil nu, ni avec les microscopes optiques conventionnels.

Comme il existe plus d'une centaine d'atomes différents, on attribue un symbole à chaque atome de même nature. Il commence toujours par une lettre majuscule suivie parfois d'une lettre minuscule.

Pour mieux visualiser ces atomes invisibles à notre œil, on utilise souvent un modèle qui représente les atomes courants sous la forme de boules colorées, à chaque atome correspond une couleur.

AtomeSymboleCouleur
HydrogèneHBlanc
CarboneCNoir
OxygèneORouge
ChloreClVert
AzoteNBleu
SoufreSJaune
PhosphorePViolet
FerFeGris

Transformations subies par les atomes

Lorsque les atomes subissent des transformations (transformation en ion monoatomique ou lorsque qu'ils établissent des liaisons avec d'autres atomes) ils le font de façon à saturer leur couche externe.

Atomes chimiquement stables

Les atomes dont la couche externe est déjà saturée ne donneront donc pas d'ion monoatomique et n'auront pas tendance à établir de liaison avec d'autres atomes. Ils sont dits "chimiquement stables". On dit aussi qu'ils présentent une grande inertie chimique.

Règle du duet

Comment rendre une molécule stable ?
Les atomes peuvent former des paires.

Au cours de leurs transformations chimiques, les atomes caractérisés par Z < 4 évoluent de manière à saturer leur couche (K). Ils acquièrent un "duet" d'électrons c'est-à-dire une paire d'électrons.

Règle de l'octet

Au cours de leurs transformations chimiques, les atomes caractérisés par Z > 4 évoluent de manière à saturer leur couche externe (L) ou (M) etc... Ils acquièrent un "octet" d'électrons c'est-à-dire 8 électrons ou 4 paires d'électrons.

Il existe des exceptions à la règle de l'octet. Ces exceptions ne sont pas étudiées dans le cadre du cours de seconde.

Prévision de la charge des ions monoatomiques.

L'application de ces règles permettent de prévoir la charge et donc la formule de la plus part des ions monoatomiques.

Par exemple : Considérons l'atome de chlore de numéro atomique Z=17 dont la formule électronique est: (K)2(L)8(M)7. Il possède 7 électrons sur sa couche externe (M). En se transformant en ion chlorure il sature cette couche externe avec un octet (8) électrons. Cet atome, initialement neutre du point de vue électrique, va donc gagner un électron c'est-à-dire une charge négative lors de sa transformation en ion chlorure. La formule de cet ion est alors: Cl-.

Défaut de masse d'un noyau et énergie de liaison d'un noyau

L’atome a une structure particulière, les scientifiques sont passés par différents stades avant d’arriver à décrire celle-ci. Le noyau d’un atome est constitué de protons et de neutrons, il est donc électriquement positif. Ce noyau est entouré d’électrons qui gravitent autour de celui-ci, la partie la plus extérieure de l’atome est donc électriquement négatif. Dans le cas d’un atome, ces deux parties électriques se compensent et donnent un atome électriquement neutre, ce n’est pas forcément le cas pour les ions. Ces deux parties sont séparées par du vide. En effet, on dit souvent de l’atome qu’il a une structure lacunaire. De plus, la taille du noyau est très petite comparé à celle de l’atome entier.

Défaut de masse d'un noyau

La masse d'un noyau est inférieure à la somme des masses des particules qui le composent. Le défaut de masse est cette différence. Elle est positive.

Défaut de masse :

[ Delta m = Z times m _ { p } + left( A - Z right) times m _ { n } - m _ { text { noyau } } ]

Energie de liaison

Relation d'Einstein

Le principe d'équivalence (1905), énergie-masse sont deux grandeurs proportionnelles et que de la masse peut se convertir en énergie et inversement. Toutes particules possèdent du fait de sa masse une énergie potentielle de repos.

[ E = m times c ^ { 2 } ]

Energie de liaison

Elle est définie comme étant l'énergie qu'il faut fournir au noyau pour le dissocier en nucléons isolés et immobiles.

[ E _ { text { noyau } } + E _ { l } = E _ { text { proton } } + E _ { text { neutron } } ]

[ E _ { l } = E times m _ { p } times c ^ { 2 } + left( A - Z right) times m _ { n } times c ^ { 2 } - m _ { text { noyau } } times c ^ { 2 } ]

[ E _ { l } = c ^{ 2 } times  left( left( Z times m _ { p } + left( A - Z right) times m _ { n } right) - m _ { text { noyau } } right) ]

[ E _ { l } = Delta m times c ^ { 2 } ]

Energie de liaison par nucléon

Un nucléon correspond à un terme générique faisant référence aux différents composants d'un noyau atomique. En effet, par nucléon on sous-entend le terme proton et neutron qui sont tous deux ce qu'on appelle des baryons. De plus, il peut être intéressant de se souvenir que le nombre de nucléons d'un atome est, de façon générale, noté A et appelé nombre de masse.

C'est l'énergie qu'il faut fournir au noyau pour le dissocier. Ces énergies de liaisons peuvent être calculées pour chaque noyau et on peut calculer pour chaque noyau son énergie de liaison par nucléon.

Atome et molécule

On l'a compris, la matière n'est finalement qu'un assemblage d'atomes mais la facon dont ils s'assemblent est très différente suivant le corps considéré. Dans un morceau de fer, on a un empilement d'atomes de fer identiques mais dans l'eau les atomes sont associés entre eux par "paquets" identiques d'atomes. Un "paquet" est appelé molécule, dans le cas de l'eau chaque "paquet" contient 1 atome d'oxygène et 2 atomes d'hydrogène.

Modèle moléculaire de l'eau

Pour visualiser une molécule, on va donc représenter les atomes sous formes de boules et les assembler comme dans un jeu de mécano mais pas n'importe comment ! On obtient un modèle moléculaire qui montre comment les atomes sont liés entre eux et disposés dans la molécule.

Une molécule est formée par un groupe d'atomes liés entre eux.

Formule d'une molécule

Une molécule peut être très complexe, le saccharose ou sucre par exemple (voir ci-contre) contient 45 atomes. Et ce n'est pas la pire ! Pour connaître la composition des différents atomes dans molécule et leur nombre, on utilise une formule.

La formule est formée par les symboles des atomes présents, le nombre de chaque atome présent est écrit en bas à droite du symbole (en indice). L'indice 1 ne s'écrit pas, on écrit juste le symbole de l'atome.

La formule de la molécule d'eau s'écrit : H2O

La théorie VSEPR

Comment observer une molécule en trois dimensions ?
La structure en pyramide est l'une des structure la plus répandue.

La théorie VSEPR , signifiant en Anglais Valence Shell Electron Pair Repulsion, encore noté RPECV en Français, signifie « répulsion des paires électroniques de la couche de valence ». Cette théorie correspond à une méthode destinée à prédire la géométrie des molécules. Cela est possible en se basant sur la théorie de la répulsion des électrons de la couche de valence, également connue sous le nom de « théorie de Gillespie »

Exemple : avec une formule VSEPR, c'est à dire Valence Shell Electron Pair Repulsion, en AX5, le pentachlorure de potassium, de formule PCl5, possède une structure en bipyramide trigonale. Cela signifie qu'il possède deux types de chlore dont :

  • Trois atomes de chlore équatoriaux, c'est à dire à 120° les uns des autres
  • Et deux atomes de chlore apicaux.

Labilité de la structure

Une fois que l'on est sûr que la molécule est la bonne, il peut être intéressant d'avoir recourt à une formule VSEPR, c'est à dire Valence Shell Electron Pair Repulsion, afin de décrire la structure de la molécule.

En effet, en prenant l'exemple d'une structure en bipyramide trigonales, on considère la molécule présente une structure labile. Cela signifie que, par une pseudorotation de Berry, les deux atomes apicaux peuvent s'échanger avec deux atomes équatoriaux tandis que le troisième atome, qui reste donc inchangé, est appelé pivot de la pseudorotation.

On peut alors, via la description VSEPR d'une molécule, décrire sa labilité.

Prérequis et supposition

La méthode VSEPR est fondée sur un certain nombre de suppositions qui concernent principalement la nature des liaisons entre atomes :

  • les atomes dans une molécule sont liés par des paires d'électrons ;
  • deux atomes peuvent être liés par plus d'une paire d'électrons. On parle alors de liaisons multiples ;
  • certains atomes peuvent aussi posséder des paires d'électrons qui ne sont pas impliqués dans une liaison. On parle de doublets non liants ;
  • les électrons composant ces doublets liants ou non liants exercent les uns sur les autres des forces électriques répulsives. Les doublets sont donc disposés autour de chaque atome de façon à minimiser les valeurs de ces forces ;
  • les doublets non liants occupent plus de place que les doublets liants ;
  • les liaisons multiples prennent plus de place que les liaisons simples.

Notation

Dans la théorie VSEPR, il y a certains usages de notation à respecter :

  • On note l'atome central de la molécule étudiée A.
  • Les doublets non-liants, et donc les paires d'électrons appartenant à l'atome central A qui se sont pas impliqués dans les liaisons sont notés E et m leur nombre.
  • Les doublets liants, et donc paires d'électrons qui sont impliqués dans des liaisons entre l'atome central A et un autre atome sont notés X. Le nombre de doublets liants sera noté n.

Les molécules simples, dont la géométrie est facilement définissable grâce à la méthode VSEPR sont donc notés suivant la notation vu ci-dessus et se présentent donc sous la forme : AXnEm

La polarisation d'une molécule

Électronégativité des atomes

Dans le domaine de la chimie, on décrit l'électronégativité comme étant une grandeur physique caractérisant la capacité d'un atome à attirer un ou plusieurs électrons lors de la formation d'une liaison chimique avec une autre espèce.

Selon leur configuration électronique, certains atomes capteront les électrons facilement alors que d'autres n'y arriveront pas. Par exemple, l'atome de fluor a pour configuration k2l7, il gagnera facilement un électron pour saturer la couche l.

La facilité des atomes à capter un électron s'appelle l'électronégativité. Dans le tableau périodique, les atomes les plus électronégatifs se trouvent en haut à droite.

Polarité d'une liaison chimique

Lorsque deux atomes sont liés chimiquement, c'est qu'ils mettent en commun deux électrons. Les deux électrons sont alors en orbite autour des deux noyaux, ils forment alors la liaison.
Dans le cas de deux atomes identiques, le doublet est également partagé et symétrique par rapport à l'axe de liaison.

Dans le cas où, les deux atomes sont différents, celui qui est le plus électronégatif attire plus fortement le doublet. Le nuage électronique est alors plus dense du côté de l'atome le plus électronégatif et crée une charge négative à cet endroit et positive sur l'autre atome. Une telle molécule possède deux pôles électriques, on dit qu'elle est polarisée.

Atome et énergie : le nucléaire

On appelle radioactivité une réaction nucléaire spontanée au cours de laquelle un noyau atomique instable se désintègre en dégageant de l'énergie, sous forme d'un rayonnement électromagnétique, pour se transmuter en un noyau plus stable.

Le phénomène de la radioactivité fut découvert en 1896 par Henry Becquerel sur l'uranium. Il avait entreprit de découvrir si un sel d'uranium phosphorescent émettait, en plus de la lumière, des rayons X (découvert par le physicien allemand, Wilhelm Röntgen en 1895). Il  exposa ce sel au soleil avant de le placer à l'obscurité sur une plaque photographique. En étudiant ces plaques, il s'aperçut qu'elles étaient impressionnées même lorsque le sel d'uranium n'avait pas été exposé à la lumière du soleil. Il met également en évidence la présence de particules chargées, le matériau émet son propre rayonnement. Ce ne sont donc pas des rayons X, il nomme ces rayons, "rayons uraniques". Fin 1897, Marie Sklodowska-Curie qui était à l'époque étudiante choisit comme sujet de thèse l'étude de ce nouveau type de rayonnement. Elle entreprend de rechercher d'autres éléments pouvant produire un rayonnement semblable à celui du sel d'uranium phosphorescent. Elle découvre que des échantillons de minéraux d'uranium (la pechblende par exemple) sont plus actifs que l'uranium lui-même. En 1898, Marie Curie, aidée de son mari Pierre Curiesépare chimiquement les éléments les plus actifs et isole ainsi le polonium puis le radium. Elle donne, en rapport avec ce dernier élément, le nom de "radioactivité" au phénomène. En 1911, Marie Curie recevra le prix Nobel de chimie pour cette découverte ; c'est la seule femme à avoir reçue deux prix Nobel. En 1903, Pierre et Marie Curie ainsi qu'Henry Becquerel reçoivent le prix Nobel de physique pour la découverte de la radioactivité. Cette même année, des études menées par Henry Becquerel, Marie Curie, Paul Villard et Ernest Rutherford montrèrent l'existence de différents types de rayonnements, les rayonnements alpha (positifs), bêta (négatifs) et gamma (neutres). Ernest Rutherford découvrit également que la radioactivité s'accompagnait de la désintégration des éléments chimiques (transformation spontanée d'un élément en un autre), il énonça les lois fondamentales de ces transformations. E. Rutherford reçu en 1908 le prix Nobel de chimie.

Marie Skłodowska-Curie est une physicienne et chimiste d’origine polonaise. Elle est très connue pour sa découverte de la radioactivité naturelle et des éléments 84 et 88 : le polonium et le radium. Elle reçut de multiples prix et distinctions pour ses recherches. Elle reçut en 1903 le prix Nobel de physique et en 1911 le prix Nobel de chimie. C’était la première femme à recevoir ce genre de distinction et encore à ce jour elle est la seule à en avoir reçu deux.

Sa définition

La radioactivité correspond à un phénomène physique au cours duquel des noyaux atomiques considérés comme instables, on les appelle alors radionucléides ou encore radioisotopes, se transforment, et ce de façon spontanée, en d’autres atomes tout en émettant par la même occasion des particules de matières comme des électrons, des noyaux d’hélium ou encore des neutrons et en émettant de l’énergie sous la forme de photons et d’énergie cinétique. On appelle cela une désintégration. On appelle alors l’émission de particules, qu’elles soient matérielle ou immatérielles, rayonnement et on est capable de parler de rayonnements ionisants car l’énergie des particules est telle qu’elle est capable d’entraîner la ionisation de la matière traversée. Il existe alors différents types de rayonnement que l’on listera un peu plus tard. La radioactivité présente des effets sur les organismes subissant des rayonnements ionisants, on parle alors d’irradiation.

Cependant, ces effets dépendent du niveau, mais aussi de la durée de l’exposition, qui peut être aiguë ou encore chronique, de la nature du rayonnement mais également de la localisation de la radioactivité. En effet, les effets ne seront pas les mêmes si l’exposition est interne que si l’exposition était externe ou encore en surface. Les rayonnements provoqués par les substances radioactives sont très largement utilisés dans les différentes industrie, notamment en ce qui concerne le contrôle de pièce manufacturées, les soudures, l’usure ou même à faible dose en médecine afin de déterminer un diagnostic ou dans une visée thérapeutique afin de soigner les cancers. Dans tous les cas, il est évident qu’il est nécessaire de suivre des mesures de prévention, de protection mais également de contrôle qui resteront adaptés au niveau de radioactivité observé.

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00 (2 note(s))
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !