Les meilleurs professeurs de Physique - Chimie disponibles
Chris
5
5 (483 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Houssem
5
5 (174 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Greg
5
5 (334 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (137 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chris
5
5 (483 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Houssem
5
5 (174 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Greg
5
5 (334 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (137 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

Exercice 1 : Les lentilles minces convergentes

1- Une expérience réalisée sur 2 lentilles minces convergentes a donné les résultats suivants :

LentilleDistance :objet-lentilleDistance focaleObservation sur l'image formée
L1O1A = 10cmf1 = ...

Image réelle et inversée

OA=OA'
L2O2A = 10cmf2 = ...Se forme à l'infini

a- En utilisant les résultats du tableau calcule f1 et f2 .

b- Détermine l'intervalle ou doit être l'objet lumineux par rapport à la lentille L2 pour obtenir une image réelle ,sa longueur supérieure à la longueur de l'objet .

2- a- Donner la définition d' une force .

     b- Citer les caractéristiques d'une force

Exercice 2 : La consommation électrique des appareils domestiques

Combien consomme un four électrique ?
Certains appareils électriques domestiques consomment beaucoup d'électricité lorsqu'ils sont en fonctionnement, c'est par exemple le cas des plaques de cuisson et des fours électriques.

On possède les appareils suivantes : four électrique ( 220V- 1800W )- chauffe à eau (220V- 1000W)-fer à repasser.

1- Détermine les indications sur le four électrique .

2- Calcule l'intensité du courant éclectique du four pendant son fonctionnement normal .

3- On branche tous les appareils au même temps , le disque du compteur électrique fait 900 tr pendant  une demi heure . Détermine la puissance du fer à repasser .on donne C= 2Wh/tr .

Exercice 3

  On a une lentille convergente L ,  sa convergence est 20δ

    1- Calcule la distance focale de cette lentille .

    2-  A l'aide d'une lentille on obtient un image A'B'= 6cm sur l'écran d'un objet lumineux AB= 2cm .

         avec l'échelle : 1cm→   2cm  ; détermine sur un papier millimétré : OA ( distance entre lentille – objet)

         et OA'( distance entre lentille –image)

    3- On pose l'objet à une distance de 3cm de la lentille . sans construction géométrique détermine la nature de l'image A''B'' ?

Exercice 4 : Le jeu du Cornhole

Le Cornhole, contraction des mots anglais « corn » et « hole » voulant dire « maïs » et « trou », est un jeu de plein air pratiqué entre autres aux États-Unis et au Canada.

Les règles de ce jeu sont assez simples. Chaque joueur est muni de quatre petits sacs contenant du maïs qu’il doit lancer en direction d’une planche inclinée par rapport à l’horizontale munie d’un trou circulaire et située environ à 8 mètres du joueur. À chaque fois qu’un sac retombe sur la planche, le joueur marque un point ; si le sac passe par le trou circulaire, le joueur marque trois points. Le premier joueur qui marque 21 points gagne la partie.

On étudie dans cet exercice les aspects énergétiques du lancer du sac puis le mouvement du centre de masse du sac dans le référentiel terrestre supposé galiléen.

Qu'est-ce que le Cornhole ?
Les Etats-Unis sont l'un des premiers producteurs mondiaux de maïs. Cela explique pourquoi le Cornhole y est un jeu si populaire !

Données :

  • Intensité de la pesanteur terrestre : g = 9,81 m·s-;
  • Masse du sac : m = 440 g.

Un joueur se place à une distance d de la planche afin de réaliser un lancer de son sac de maïs. La situation est représentée sur la figure 1 ci-dessous. Afin de simplifier l’étude, la planche est considérée quasi-horizontale. Dans le repère d’espace (Ox, Oz) muni des vecteurs unitaires  et , le sac de maïs est lancé, depuis une hauteur initiale H, avec une vitesse initiale dont le vecteur  est incliné d’un angle α par rapport à l’horizontale. On s’intéresse au mouvement du centre de masse G du sac. L’axe (Oz) du repère d’espace est vertical.

Figure 1. Schéma représentant la situation du lancer du sac.

1.   Étude énergétique

Le mouvement complet du sac est filmé puis étudié à l’aide d’un logiciel de pointage. Les données de la partie ascendante du mouvement sont traitées à l’aide d’un programme écrit en langage python (extrait en figure 2) qui permet de représenter l’évolution au cours du temps des énergies cinétique (Ec), potentielle de pesanteur (Epp) et mécanique (Em) du sac (figure 3).

#importation des bibliothèques utilisées
import numpy as np
import matplotlib.pyplot as plt # valeurs experimentales
z=np.array([0.869, 0.996, 1.17, 1.3, 1.41, 1.51, 1.6, 1.67, 1.75, 1.82, 1.86, 1.92, 1.94, 1.94, 1.97, 1.96, 1.96])
t=np.array([0,0.033, 0.067, 0.1, 0.133, 0.167, 0.2, 0.233, 0.267, 0.3, 0.333, 0.367, 0.4, 0.433, 0.467, 0.5, 0.533])
vx=np.array([7.61, 7.66, 7.712, 7.517, 7.595, 7.578, 7.334, 7.39, 7.329, 7.184, 7.239, 7.116, 7.065, 7.119, 6.997, 7.006, 6.997])
vz=np.array([4.8, 4.484, 4.158, 3.797, 3.219, 2.787, 2.515, 2.314, 2.008, 1.827, 1.447, 0.9539, 0.7198, 0.3329, 0.1782, -0.02958, -0.4165]) #Calcul des énergies m=0.440 g=9.81 ? = (vx**2 + vz**2)**(1/2) ? = 0.5*m*v**2 ? = m*g*z ? = 0.5*m*v**2 + m*g*z

Figure 2. Extrait du programme écrit en langage python

Figure 3. Évolution des énergies cinétique, potentielle de pesanteur et mécanique du sac
au cours du temps obtenue à l’aide du programme écrit en langage python.

1.1 Identifier les grandeurs calculées dans l’extrait du programme écrit en langage python (figure 2) aux lignes 15, 16, 17 et 18.

1.2 Exploitation de la figure 3

1.2.1 En justifiant votre choix, attribuer à chaque série l’énergie qui lui correspond.

1.2.2 Expliquer en quoi les résultats expérimentaux permettent de considérer que l’action de l’air sur le sac

n’est pas négligeable devant le poids du sac.

1.2.3 Estimer la valeur de la vitesse initiale  du centre de masse du sac.

1.2.4 Estimer la valeur de l’altitude initiale H du centre de masse du sac. Commenter.

2.   Étude du mouvement du sac après le lancer

On souhaite étudier la chute du sac au cours du temps. La situation est toujours représentée sur la figure 1. Les frottements ne seront pas pris en compte dans cette partie.

On souhaite établir les expressions littérales des grandeurs accélération, vitesse et position du sac lors de son mouvement, ainsi que les caractéristiques (vitesse initiale et direction initiale) nécessaires à la réussite d’un lancer valant trois points.

Les dimensions de la planche sont précisées sur la figure 4 ci-dessous :

Figure 4. Dimensions de la planche de Cornhole.

1.1. Déterminer les expressions littérales des coordonnées ax et az du vecteur accélération  du centre de masse du sac suivant les axes Ox et Oz.

1.2. En déduire les expressions littérales des équations horaires x(t) et z(t) de la position du centre de masse du sac au cours du mouvement.

1.3. Montrer que l’équation littérale de la trajectoire du centre de masse du sac dans le repère d’espace (Ox, Oz) est :

\[z (x) = - \frac { 1 } { 2 } g \cdot \frac { x ^ { 2 } } { v ^ { 2 } _ { 0 } \cdot \cos ^ { 2 } ( \alpha ) } + x \cdot tan ( \alpha ) + H\]

Qualifier cette trajectoire.

2.4 Indiquer les paramètres initiaux de lancement sur lesquels le joueur peut avoir une influence et qui jouent un rôle pour la réussite d’un lancer à trois points.

Le joueur effectue un premier lancer. L’équation de la trajectoire du centre de masse du sac a pour expression numérique :

z(x) = - 0,0842 x2 + 0,625 x + 0,880        avec x et z en m

La distance d qui sépare l’origine O du repère d’espace et le bord de la planche est égale à d = 8,0 m.

2.5. Déterminer le nombre de point(s) marqué(s) par le joueur pour ce lancer.

2.6. Le joueur effectue un second lancer en conservant le même angle de tir α, la même hauteur initiale H mais en modifiant la valeur de la vitesse initiale par rapport au premier lancer.

Déterminer une valeur possible de la nouvelle vitesse initiale v0 , afin que le sac tombe directement dans le trou. Commenter la valeur obtenue.

Exercice 5 : Un indicateur coloré naturel issu du choux rouge

Les anthocyanes sont des espèces chimiques responsables de la couleur de nombreux végétaux comme le chou rouge, l’hortensia ou encore l’aubergine. Une des propriétés remarquables des anthocyanes est que leur couleur en solution dépend fortement du pH de la solution.

Qu'est-ce que l'anthocyane ?
Les anthocyanes sont un colorant alimentaire naturel couramment utilisées. Elles sont présentes naturellement dans différents légumes.

Dans cet exercice, on se propose de modéliser un indicateur coloré naturel contenant des anthocyanes pour pouvoir l’utiliser lors du titrage d’un lait fermenté.

Données :

  • Numéros atomiques des éléments hydrogène, carbone et oxygène :
Élément chimiqueNuméro atomique
H1
C6
O8
  • Constante d’acidité à 20°C du couple acide lactique / ion lactate : KA = 10–3,9;
  • Masse molaire de l’acide lactique : MAH = 90,1 ;
  • L’acidité Dornic d’un lait, exprimée en degré Dornic de symbole °D, est reliée à la concentration en masse d’acide lactique dans ce lait en considérant qu’il est le seul acide présent : 1,0 °D correspond à une concentration en masse en acide lactique égale à 0,10 g·L–1.

1. Modélisation d’un indicateur coloré naturel issu du chou rouge

La couleur du chou rouge est principalement due à la présence d’une vingtaine d’anthocyanes différentes. Pour comprendre l’influence du pH du milieu sur la couleur, on modélise ce mélange complexe d’espèces chimiques par une seule espèce chimique, la cyanidine (figure 1), dont la structure est commune à toutes les anthocyanes.

Figure 1. Formule topologique de la cyanidine

On limite la modélisation à des milieux où le pH est compris entre 4,5 et 9,0.

Dans cet intervalle, la cyanidine existe principalement sous trois formes :

Au laboratoire, on prépare une solution de jus de chou rouge en faisant macérer pendant dix minutes dans de l’eau distillée chaude le quart d’un chou rouge coupé en morceaux. On filtre le mélange et on obtient une solution aqueuse de couleur violet-bleu intense. On fait varier le pH de la solution et on note la couleur correspondante :

CouleurVioletVioletViolet-bleuViolet-bleuBleuBleuBleu-vertBleu-vertVertVert
pH4,55,05,56,06,57,07,58,08,59,0

1.1. Justifier que la forme n°1 est une espèce amphotère.

1.2. Recopier puis compléter les pointillés du diagramme de prédominance ci-après pour cet indicateur coloré.
Associer une couleur à chaque forme en solution aqueuse.

2. Titrage d’un lait fermenté

Pour préparer des fromages ou des yaourts, il est nécessaire de faire fermenter du lait frais. Des bactéries appelées ferments lactiques sont utilisées pour transformer notamment le lactose du lait frais en acide lactique (figure 2).

Lors de la fabrication des produits laitiers, pour déterminer l’avancement de la fermentation du lait, les techniciens réalisent un titrage acido-basique de l’acide lactique formé afin de déterminer l’acidité Dornic.

L’acidité Dornic d’un lait doit être supérieure à 80 °D pour pouvoir fabriquer un yaourt.

Figure 2. Formule topologique
de l’acide lactique

2.1. Représenter le schéma de Lewis de l’ion lactate.

2.2. Justifier que la fermentation du lait contribue à acidifier celui-ci.

2.3. On veut modéliser la transformation chimique entre l’acide lactique et l’eau du lait. On notera AH l’acide  lactique et A l’ion lactate.

2.3.1 Écrire l’équation de la réaction modélisant cette transformation chimique.

2.3.2 Montrer que cette transformation chimique est spontanée. On admettra que la concentration initiale  en ion lactate est nulle.

La méthode Dornic consiste à titrer 10,0 mL de lait par une solution aqueuse d’hydroxyde de sodium de concentration en quantité de matière C0 = 1,11×10–1 mol·L–1. On note VE le volume de solution titrante versée à l’équivalence.

On modélise la transformation chimique mise en jeu lors de ce titrage par une réaction support dont l’équation est la suivante :

AH (aq) + HO- (aq) → A- (aq) + H20 (l)

On applique la méthode Dornic à un lait en utilisant le chou rouge comme indicateur coloré. Le pH initial vaut 5,9 et le pH à l’équivalence vaut 8,3. Le volume versé à l’équivalence est égal à 2,8 mL.

On applique la méthode Dornic à un lait en utilisant le chou rouge comme indicateur coloré. Le pH initial vaut 5,9 et le pH à l’équivalence vaut 8,3. Le volume versé à l’équivalence est égal à 2,8 mL.

2.4. Justifier que le jus de chou rouge peut être utilisé pour repérer l’équivalence de ce titrage et préciser le changement de couleur du milieu.

2.5. En détaillant le raisonnement, déterminer si l’acidité Dornic du lait fermenté testé permet la fabrication d’un yaourt.

Exercice 6 : Une boisson de réhydratation

Une boisson de réhydratation, obtenue par dissolution dans l’eau d’un médicament commercialisé sous forme de poudre, est composée principalement d’eau, de glucose (sucre) et de chlorure de sodium (sel). Elle peut être utilisée pour réhydrater rapidement un enfant souffrant de diarrhée.

Qu'y-a-t-il dans une boisson énergisante ?
Certaines boissons énergisantes sont dotées de propriétés réhydratantes, importantes lors d'un effort sportif.

L’objectif de cet exercice est de vérifier la teneur en glucose d’une de ces boissons par la spectrophotométrie UV-visible.

Données :

  • pKA de couples acide-base à 25°C :
    • H2T(aq) / HT(aq) : pKA1 = 3,5 ;
    • HT(aq) / T2–(aq) : pKA2 = 4,2 ;
    • H2O() / HO(aq) : pKE = 14 ;
  • Couple oxydant-réducteur ion gluconate / glucose : (aq) / (aq);
  • Composition d’un médicament permettant la réhydratation commercialisée en pharmacie :
    • Glucose (C6H12O6) : 4 g
    • Saccharose (C12H22O11) : 4 g
    • Sodium (Na+) : 0,226 g
    • Potassium (K+) : 0,199 g
    • Chlorure (Cl) : 0,181 g
    • Bicarbonate (HCO3) : 0,289 g
    • Gluconate (C6H11O7) : 0,995 g

1. Étude de la liqueur de Fehling

Pour doser le glucose présent dans un médicament permettant la réhydratation, on prépare au préalable une solution de liqueur de Fehling en mélangeant :

  • Une solution aqueuse (A) contenant des ions cuivre Cu2+(aq) ;
  • Une solution aqueuse (B) obtenue lors du mélange d’une solution d’acide tartrique H2T(aq) et d’une solution aqueuse d’hydroxyde de sodium. La solution (B) ainsi obtenue est très basique, son pH est supérieur à 12.

1.1 Écrire la formule semi-développée de la molécule d’acide tartrique. Entourer les groupes caractéristiques de la molécule, en précisant pour chacun d’eux la famille fonctionnelle correspondante.

1.2 Déterminer la forme prédominante dans la solution (B) parmi les espèces H2T(aq), HT(aq) et T2–(aq).

1.3 En déduire l’équation de la réaction chimique modélisant la transformation ayant lieu lors de la préparation de la solution (B).

Lors du mélange des solutions (A) et (B), les ions Cu2+(aq) réagissent avec les ions tartrate T2–(aq) pour former des ions de formule CuT22–(aq), seuls responsables de la coloration bleue de la liqueur de Fehling.

1.4 Écrire l’équation de la réaction chimique modélisant la transformation ayant lieu lors du mélange des solutions (A) et (B).

Le spectre d’absorption de la liqueur de Fehling (figure 1) est donné ci-après ainsi qu’un cercle chromatique (figure 2) :

Figure 1. Spectre d’absorption de la liqueur de Fehling
Figure 2. Cercle chromatique

1.5. Justifier la couleur de la solution de liqueur de Fehling.

2. Dosage du glucose

Le médicament permettant la réhydratation contient, entre autres, du glucose qui possède des propriétés réductrices. On souhaite utiliser ces propriétés pour réaliser un dosage par étalonnage utilisant la spectrophotométrie.

On réalise une courbe d’étalonnage selon le protocole expérimental suivant :

  1. Préparer une gamme de solutions aqueuses étalons de concentrations en masse Cm de glucose connues ; ces solutions étalons sont incolores ;
  2. Faire réagir, une à une, 10,0 mL de ces solutions étalons avec 5,0 mL de liqueur de Fehling dans un bain-marie bouillant pendant 15 min ; il se forme le précipité rouge-brique Cu2O ;
  3. Eliminer le précipité du mélange par filtration. Le filtrat obtenu est de couleur bleue ;
  4. Introduire ce filtrat dans une fiole jaugée de 25,0 mL et ajuster le trait de jauge avec de l’eau distillée ;
  5. Mesurer avec un spectrophotomètre l’absorbance de la solution obtenue de couleur bleue.

Le glucose contenu dans le médicament permettant la réhydratation réagit avec les ions CuT22– contenus dans la liqueur de Fehling. Cette transformation chimique est totale et produit l’ion gluconate et l’oxyde de cuivre Cu2O(s), de couleur rouge-brique. L’équation de la réaction modélisant cette transformation est :

2.1. Justifier le caractère réducteur du glucose dans cette réaction à l’aide d’une demi-équation électronique.

2.2. À l’issue de la réaction entre une solution étalon de glucose et la solution de liqueur de Fehling, le filtrat

est de couleur bleue. Identifier le réactif limitant.

2.3. Proposer une longueur d’onde optimale pour régler le spectrophotomètre afin de réaliser les mesures.

La courbe d’étalonnage est obtenue à partir des mesures de l’absorbance des filtrats des différents mélanges. Elle est modélisée par une droite d’équation :

A = – 0,39Cm + 0,88

avec Cm en g·L–1.

Figure 3. Courbe d’étalonnage : absorbance en fonction de la concentration en masse Cm de glucose

2.4. Expliquer pourquoi l’absorbance du filtrat diminue lorsque la concentration en masse de glucose augmente.

Afin de déterminer la masse de glucose contenue dans un sachet de médicament permettant la réhydratation, on réalise l’expérience suivante :

  1. Une solution (S1) de volume V1= 500,0 mL est préparée en dissolvant le contenu d’un sachet de médicament dans de l’eau distillée ;
  2. La solution (S1) est ensuite diluée d’un facteur 10 pour obtenir la solution (S2) ;
  3. En réalisant le même protocole expérimental que pour les solutions étalons, on mesure une absorbance A = 0,59 lorsqu’on utilise 10,0 mL de solution (S2) à la place de 10,0 mL de solution étalon.

2.5. Déterminer la masse de glucose contenue dans le sachet de médicament permettant la réhydratation et commenter le résultat obtenu.

Exercice 7 : Four à micro-ondes pour synthèse organique

Un dispositif de chauffage est nécessaire pour réaliser de nombreuses synthèses organiques. Le montage à reflux est couramment utilisé au laboratoire ou dans l’industrie. Cependant depuis les années 1980, les fours micro-ondes domestiques constituent une alternative.

L’objectif de cet exercice est d’étudier la synthèse d’un principe actif utilisé dans le traitement de l’épilepsie : la phénytoïne.

Les trois étapes de cette synthèse sont représentées ci-dessous :

Figure 1. Schéma de synthèse de la phénytoïne

Données :

Espèce chimiqueHydroxyde de potassiumUréeBenzilePhénytoïne
Formule bruteKOHCH4N2OC14H10O2C15H12N2O2
Masse molaire en g·mol–156,160,1210,2252,3

1. Préparation de la benzoïne (étape 1)

On utilise un four à micro-ondes pour réaliser l’étape 1 de la synthèse qui est catalysée par le chlorure de thiamine.

Le protocole expérimental simplifié est le suivant :

  1. Dans un erlenmeyer de 100 mL, introduire 1,35 g de chlorure de thiamine, environ 4 mL d’eau, 15 mL d’éthanol à 95 %, 7,0 mL d’une solution aqueuse d’hydroxyde de potassium (K+(aq) ; HO(aq)) de concentration 1,1 mol·L–1 puis agiter à température ambiante ;
  2. Ajouter 2,0 mL de benzaldéhyde ;
  3. Recouvrir d’un entonnoir et chauffer à l’aide d’un four à micro-ondes pendant 1 min à la puissance de 600 W, sortir du four et laisser cristalliser à température ambiante puis refroidir dans un bain eau-glace ;
  4. Filtrer sur Büchner, laver les cristaux avec de l’eau glacée et les rincer avec un mélange refroidi eau-éthanol ; on obtient des cristaux blancs ;
  5. Purifier le produit à l’aide d’une recristallisation dans l’éthanol.

On réalise deux chromatographies sur couche mince (CCM) des cristaux obtenus : une avant l’étape de recristallisation et une après cette étape. L’éluant utilisé est un mélange d’éther de pétrole et d’acétate d’éthyle. La révélation s’effectue sous une lampe UV, et les dépôts proviennent de solutions diluées d’un facteur 100 dans l’acétate d’éthyle.

Figure 2. Reproduction des plaques de chromatographie sur couche mince (CCM)
avant et après purification

1.1. Recopier la formule topologique de la benzoïne sur la copie. Entourer les groupes caractéristiques et nommer les familles fonctionnelles correspondantes.

1.2. Déterminer la valeur de la masse d’hydroxyde de potassium solide à prélever pour préparer les 100,0 mL de solution aqueuse d’hydroxyde de potassium utilisée dans l’étape a.

1.3. Donner l’état physique du produit obtenu à la fin de l’étape c du protocole expérimental.

1.4. Indiquer la plaque qui correspond à la CCM effectuée avant la purification. Justifier.

1.5. Proposer une autre méthode d’identification du produit obtenu en fin de synthèse.

2. Préparation du benzile (étape 2)

2.1. Donner la formule brute de la benzoïne.

2.2. Justifier, à partir de la demi-équation électronique associée au couple oxydant / réducteur benzile / benzoïne, que l’étape 2 correspond bien à une oxydation de la benzoïne.

3. Préparation de la phénytoïne (étape 3)

L’étape 3 de la synthèse se réalise également à l’aide d’un four à micro-ondes, en milieu basique, en utilisant l’éthanol comme solvant. On introduit 1,00 g de benzile et 0,450 g d’urée. Après réaction, on obtient une masse de 1,11 g de phénythoïne.

Figure 3. Équation de réaction modélisant l’étape 3 de la synthèse

Calculer le rendement de l’étape 3 de la synthèse de la phénytoïne.

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5,00 (1 note(s))
Loading...

Clément

Freelancer et pilote, j'espère atteindre la sagesse en partageant le savoir que j'ai acquis lors de mes voyages au volant de ma berline. Curieux scientifique, ma soif de découverte n'a d'égale que la durée de demie-vie du bismuth 209.