Les meilleurs professeurs de Physique - Chimie disponibles
Chris
5
5 (456 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Houssem
5
5 (197 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4.9
4.9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chris
5
5 (456 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Houssem
5
5 (197 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4.9
4.9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

Dynamique en référentiel non galiléen

Un référentiel est un solide par rapport auquel on étudie un mouvement. On prend souvent comme référentiel le solide Terre.

  • Le référentiel géocentrique (construit à partir des centres de la Terre et de trois étoiles lointaines qui paraissent fixes) est utilisé pour étudier le mouvement des satellites terrestres ;
  • Le référentiel héliocentrique ( construit à partir des centres du soleil et de trois autres étoiles, ) est utilisé pour étudier les voyages interplanétaires ou le mouvement des planètes autour du Soleil.

Un repère d'espace orthonormé, lié à un référentiel, est un système d'axes orthogonaux et normés, muni d'une origine O. Dans ce repère, on peut exprimer les coordonnées du mobile ponctuel étudié. La trajectoire d'un mobile ponctuel est constituée par l'ensemble des positions successives occupées par le mobile au cours du temps. Pour calculer la vitesse v moyenne entre deux instants d'un solide, on utilise la formule suivante: vitesse moyenne (m/s) = distance parcourue (m) / durée du parcours (s) vecteur vitesse instantanée = dérivée du vecteur position par rapport au temps. ce vecteur est porté par la tangente à la trajectoire à la date considérée et a toujours le sens du mouvement. Dans un référentiel galiléen, si la somme vectorielle des forces extérieures appliquées à un solide est nulle ( solide pseudo-isolé ) alors le centre d'inertie G de ce solide est soit au repos, soit animé d'un mouvement rectiligne uniforme et réciproquement. Un solide peut donc se déplacer même si la somme des forces appliquées à ce solide soit nulle. Dans un référentiel galiléen, si le vecteur vitesse du centre d'inertie d'un solide varie, alors la somme vectorielle des forces extérieures appliquées à ce solide n'est pas nulle et réciproquement. La direction et le sens de cette somme sont ceux de la variation du vecteur vitesse entre deux instants proches. Dans un référentiel galiléen, la somme vectorielle des forces extérieures appliquées à un solide est égale au produit de la masse M du solide par l'accélération de son centre d'inertie.

L'inertie

Comment définir l'inertie ?
Le principe d'inertie est le principe physique selon lequel un objet lancé à une certaine vitesse va continuer à se déplacer avec la même vitesse. En effet, sur Terre il y a des frottements dus à l'air et auxquels nous sont soumis.

En physique, on appelle inertie d'un corps, dans un référentiel galiléen, une tendance de ce corps à conserver sa vitesse. En effet, lorsqu'il y a absence d'influences extérieures, on parle aussi de forces extérieures, alors tout corps que l'on considère comme ponctuel va perdurer dans un mouvement rectiligne uniforme. Notons que l'on appelle aussi l'inertie, principe d'inertie ou encore loi d'inertie. Puis, lorsque Newton est arrivé, on l'appelle également première loi de Newton. Elle s'énonce ainsi :

Un système isolé ou pseudo-isolé initialement au repos ou en mouvement rectiligne uniforme demeure dans son état.

On appelle référentiel galiléen tout référentiel au sein duquel le principe d'inertie est vérifié. Même s'il n'existe aucun référentiel galiléen au sens strict. Il est cependant possible de considérer certains référentiels usuels comme galiléen si certaines conditions sont vérifiée :

  • Ainsi, le référentiel terrestre peut être considéré galiléen si on considère un mouvement dont la durée ne dépasse pas quelques minutes dans le but de s'affranchir du mouvement de rotation propre de la Terre ;
  • Le référentiel géocentrique peut également être considéré comme étant galiléen si on considère un mouvement dont la durée ne dépasse quelques heures dans le but de s'affranchir du mouvement de rotation de la Terre autour du Soleil ;
  • Le référentiel héliocentrique peut aussi être considéré comme étant galiléen car l'impact du mouvement de rotation du Soleil au sein de la galaxie est négligeable.

Système de deux points matériels

Pour étudier le mouvement d’un système on a toujours besoin de se fixer un référentiel : c’est un objet par rapport auquel on étudiera le mouvement de notre système.

Qu'est-ce que le référentiel héliocentrique ?
Toutes les planètes du système solaire tournent autour du Soleil. On dit donc qu'elles évoluent dans le référentiel héliocentrique.

Définition : La trajectoire d’un point matériel est l’ensemble des positions successives occupées par ce point au cours du temps. Elle dépend du référentiel choisi.

En simplifiant, on peut définir le référentiel comme quelque chose correspondant au milieu au sein duquel on étudie le mouvement. En effet, si on choisi de prendre l'exemple du voyageur assit dans un train en marche alors le référentiel vas changer selon l'observateur :

  • Par rapport à un observateur sur le quai, le voyageur est en mouvement ;
  • Par rapport à un observateur dans le train, le voyageur est immobile.

Ainsi, il est possible de conclure que, pour décrire le mouvement d’un mobile, il faut choisir un repère d’espace ou référentiel. La trajectoire correspond à l’ensemble de toutes les positions successives qu’occupe un point du mobile au cours du temps. La trajectoire peut-être curviligne, c'est à dire en vague, circulaire, donc en forme de rond, ou rectiligne.

  • Mouvement rectiligne : la trajectoire est une droite ;
  • Mouvement circulaire : la trajectoire est un arc de cercle ;
  • Mouvement curviligne : la trajectoire est une courbe quelconque, plane ou non.

Deux types de mouvement sont très importants dans l’étude des systèmes :

  • La translation : Dans un mouvement de translation, chaque segment de droite, appartenant au mobile, reste parallèle à lui-même, au cours du déplacement et tous les points du mobile ont des trajectoires identiques de même longueur ;
  • La rotation : Dans un mouvement de rotation, tous les points du mobile décrivent des cercles ou des arcs de cercles centrés sur une droite fixe que l'on appelle axe de rotation. On peut notamment illustrer ce mouvement avec l'exemple des aiguilles d’une horloge.
    • Si la trajectoire est une droite, la translation est rectiligne, comme dans le cas d'un ascenseur ;
    • Si la trajectoire est une courbe, la translation est curviligne, comme dans le cas d'un téléphérique ;
    • Si la trajectoire est un cercle ou un arc de cercle, la translation est circulaire, comme dans le cas d'une grande roue.

Définition : Une translation correspond à une droite passant par 2 points quelconques du solide qui reste parallèle au cours du mouvement

Définition :Une rotation correspond à un mouvement où tous les points décrivent des cercles dont les centres sont alignés et tous les plans sont parallèles.

De la mécanique à la thermodynamique, modèle du GPM

Définitions sur la thermodynamique

La conductivité thermique

La conduction thermique, également appelée diffusion thermique, correspond à un mode de transfert thermique qui est provoqué par la présence d'un gradient de température entre deux régions qui composent un même milieu ou alors entre deux milieux qui sont en contact direct. Il va alors y avoir, contrairement à la convection, un transfert d'énergie thermique sans déplacement global de matière à l'échelle macroscopique. Il est alors possible d'interpréter ce mode de transfert thermique comme étant la transmission de proche en proche de l'agitation thermique. Autrement dit, un atome, voire une molécule, va céder une partie de son énergie cinétique à un atome, ou une molécule, qui est à son voisinage.

Le transfert thermique

Ce qu'on appelle transfert thermique en sciences est plus couramment appelé chaleur dans la vie quotidienne. Un transfert thermique correspond à l'un des modes d'échange d'énergie thermique entre deux systèmes. Dans le cas du double vitrage, on parlera du système extérieur  et du système intérieur (la maison). Cela correspond à une notion fondamentale de la thermodynamique et, contrairement au travail, les transferts thermiques correspondent à un bilan de transferts d'énergie dits microscopiques et désordonnées. Il est possible de distinguer trois type de transfert thermique, tous pouvant coexister :

  • La conduction correspond à la diffusion progressive de l'agitation thermique dans la matière ;
  • La convection correspond au transfert thermique qui accompagne des déplacements macroscopiques de la matières ;
  • Et le rayonnement qui correspond à la propagation de photons.
A quoi sert la convection ?
Les radiateurs domestiques qui équipent habituellement nos maisons utilisent la convection pour chauffer nos pièces.

Ainsi, la quantité de chaleur, notée Q et exprimée en joule, correspond à la quantité d'énergie qui sera échangée par le moyen de ces trois différents type de transfert. Une convention indique alors que, lorsque Q > 0, on dit que le système reçoit de l'énergie. De plus, il peut être intéressant de retenir que la thermodynamique fait appel au concept de chaleur afin de mettre en place le premier mais aussi de deuxième principe de la thermodynamique. Malgré tout cela, il reste de nombreuses ambiguïtés mais également de nombreuses confusions qui s'entretiennent. En effet,  malgré le sens que l'on accorde à chaleur dans la vie quotidienne, le principe de chaleur au sens thermodynamique du mot n'a aucun lien avec la température. Cependant, il reste vrai que les transferts thermiques spontanées se font toujours du système le plus élevé en température vers le système le moins élevé en température même s'il reste possible de provoquer l'inverse grâce à une machine thermique comme un réfrigérateur. Il est d'ailleurs intéressant de noter que, lorsqu'il y a un changement d'état, le corps pur ne changera pas de température bien qu'il échange de l'énergie sous forme de chaleur.

Le choc thermique

Le choc thermique est un événement qui engendre des contrainte interne au sein des matériaux et qui peut donc les amener à éclater, même pour des matériaux durs et rigides. On peut illustrer cela avec l'exemple du verre qui est très sensible au choc thermique. En effet, en cas de choc thermique brutal, si le verre présente un impact ou une imperfection, celui-ci peut éclater et provoquer un bris de glace. C'est pour cela qu'il faut être prudent à l'état de son pare-brise en été avec la climatisation ou en hiver avec le chauffage ! Mais la roche est également un matériau sensible au choc thermique. En effet, dès la préhistoire, on a utilisé le phénomène de choc thermique afin de chercher des silex ou encore pour exploiter divers minerais de métaux. On appelle cela le dépilage par le feu, on utilisait cette méthode dans les mines anciennes.

De plus, lors qu'un matériau subit un refroidissement rapide, le cœur de se matériau peut être encore chaud alors que la partie externe de celui-ci est froide et commence donc à se rétracter. Cela engendre alors des contraintes de tension pouvant provoquer des fissures voire même l'éclatement du matériau. C'est donc dans le but de limiter ce phénomène que l'on refroidit de manière lente les céramiques et certains verres. Parfois même, on les recuit afin de les rendre plus solide. Il faut néanmoins rester prudent puisqu'en cas de réchauffement rapide, il peut également y avoir un risque de fissuration à cause de la différence de température bien que celle-ci soit nettement moindre que dans le cas du refroidissement rapide.

Structure électronique des atomes

Composition du noyau

Le noyau d'un atome se compose d'éléments que l'on appelle les nucléons. Ce sont eux qui définissent le nombre de masse d'un atome.

Le nombre de masse d’un atome est le nombre de nucléons qu’il contient. Il s’agit donc de la somme du nombre de protons et du nombre de protons qui constituent le noyau de l’atome

Dans ces nucléons se trouvent des protons dont la charge est positive et des neutrons à charge neutre. Ces deux composants sont très fortement liés entre eux. Le rayon d'un nucléon est d'environ 10-15 m alors que l'atome tout entier a un diamètre avoisinant les 10-10 m.

Stabilité

Stabilité de l'atome

Pour que le noyau et les électrons restent stables entre eux. Ils sont donc liés par une énergie de liaison. Si ils ne sont pas bien liés entre eux, les atomes deviennent instables et se transforment. Ils sont donc radioactifs. Il existe trois types de radioactivité.

Radioactivité gamma

La radioactivité gamma est un rayonnement provoqué par une désintégration gamma. Le plu souvent, ces désintégrations accompagnent des désintégrations alpha ou bêta. En effet, quand il émet un rayon alpha ou bêta, le noyau devient excité. Lors de l’émission d’un rayonnement électromagnétique gamma, le noyau peut donc redescendre à un état plus stable.

Radioactivité bêta

La radioactivité bêta est un type de désintégration radioactive où une particule bêta (électron ou positron) est émise. On parle de radioactivité bêta + quand un positron est émis mais on parle de radioactivité – quand c’est un électron qui est émis.

Radioactivité alpha

La radioactivité alpha est un rayonnement provoqué par une désintégration alpha qui est une désintégration radioactive où un noyau atomique éjecte une particule alpha qui se transforme en un autre noyau dont le nombre de masse est diminué de 4 et le numéro atomique de 2 à cause de la particule alpha manquante qui est analogue au noyau d’hélium 4.

Stabilité du noyau

Certains noyaux qui ont une bonne énergie de liaison restent stables. En réalité, la stabilité n'existe pas vraiment. On considère qu'on atome est stable quand sa demie-vie est égale à 1033 années, soit la durée de vie du proton. En conclusion, il n'existe aucun noyau qui soit réellement stable à l'échelle de l'Univers. Par exemple, le diamant que nous trouvons tous très solide et stable est instable à l'échelle de la Terre mais stable à l'échelle de l'Homme.

Où trouver l'atomium ?
Cette oeuvre d'architecture présente à Bruxelles en Belgique représente assez bien la structure atomique. Avec des électrons qui gravitent autour, le noyau se place au milieu du modèle.

Liaisons

Dans un solide moléculaire les atomes sont liés par des liaisons covalentes : les deux atomes mettent en commun leurs électrons célibataires pour créer un doublet liant. Quand les deux atomes sont identiques, la paire d’électron qui relie les deux atomes est répartie équitablement entre les deux atomes. On dit alors que la molécule est apolaire. Quand deux atomes qui mettent leurs électrons en jeu sont différents et qu’il existe une différence d’électronégativité significative entre ces deux atomes, la liaison est dire polarisée et on appelle ce type de molécule, molécule polaire.

Une liaison covalente est dite polarisée si les deux atomes qui sont liés ont des électronégativités très différentes. En effet, dans ce cas, un des deux atomes aura tendance à attirer les électrons, ce qui a pour effet de polariser la liaison. Plus la différence d’électronégativité est grande et plus la polarisation de la liaison sera importante. Il se forme ainsi une sorte de dipôle électrique. Le décalage des électrons conduit à noter une charge partielle négative δ– sur l’atome le plus électronégatif et une charge partielle positive δ+ sur le moins électronégatif

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5.00 (1 note(s))
Loading...

Clément

Freelancer et pilote, j'espère atteindre la sagesse en partageant le savoir que j'ai acquis lors de mes voyages au volant de ma berline. Curieux scientifique, ma soif de découverte n'a d'égale que la durée de demie-vie du bismuth 209.