Les meilleurs professeurs de Physique - Chimie disponibles
Chris
5
5 (456 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Houssem
5
5 (197 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4.9
4.9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chris
5
5 (456 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Houssem
5
5 (197 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4.9
4.9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

Introduction

Le bloc 3 est consacré à la réflexion et la transmission d’ondes à une interface plane sous incidence normale en acoustique et en électromagnétisme. Dans ce dernier cas, on se limite ici aussi aux milieux non magnétiques. La notion de densité de courants superficiels et les relations de passage du champ électromagnétique ne figurent pas au programme. La notion de conducteur parfait ne figure pas au programme, les conditions aux limites sur la composante normale du champ électrique et la composante tangentielle du champ magnétique doivent être fournies si nécessaire dans un problème.

Notions, contenus et capacités exigibles : Interfaces entre deux milieux

  • Réflexion, transmission d’une onde acoustique plane progressive sous incidence normale sur une interface plane infinie entre deux fluides : coefficients de réflexion et de transmission en amplitude des vitesses, des surpressions et des puissances acoustiques surfaciques moyennes.
    • Expliciter des conditions aux limites à une interface. Établir les expressions des coefficients de  transmission et de réflexion. Associer l’adaptation des impédances au transfert maximum de puissance.
  • Réflexion d’une onde plane progressive harmonique entre deux demi-espaces d’indices complexes n1 et n2 sous incidence normale : coefficients de réflexion et de transmission du champ électrique.
    • Exploiter la continuité (admise) du champ électromagnétique dans cette configuration pour obtenir l’expression du coefficient de réflexion en fonction des indices complexes.
  • Cas d’une interface vide-plasma. Coefficients de réflexion et de transmission en puissance.
    • Distinguer les comportements dans le domaine de transparence et dans le domaine réactif du plasma.
    • Établir les expressions des coefficients de réflexion et transmission du champ pour un métal réel. Passer à la limite d’une épaisseur de peau nulle.
  • Cas d’une interface vide-conducteur ohmique de conductivité réelle constante.
    • Identifier le comportement du métal dans ce domaine, avec celui d’un plasma localement neutre peu dense en-dessous de sa pulsation de plasma.
    • Associer la forme du coefficient complexe de réflexion à l’absence de propagation d’énergie dans le métal en moyenne temporelle.
  • Cas d’une interface vide-conducteur ohmique dans le domaine optique visible.
    • Identifier l’incidence de Brewster et utiliser cette configuration pour repérer la direction absolue d’un polariseur.
  • Polarisation par réflexion vitreuse sous incidence oblique.

Description de l'onde et approfondissement du son

Comment définir une onde ?
Tout comme le son, la lumière est une onde.

Le son correspond a une vibration mécanique d'un fluide qui va alors se propager, grâce à la déformation élastique du fluide, en prenant la forme d'ondes longitudinales. Les Hommes, mais également beaucoup d'autres animaux, peuvent ressentir cette vibration grâce au sens que nous appelons : l'ouïe.

Les ondes sonores audibles sont caractérisées par des fréquences allant de 20 Hz à 20 kHz, ce qui correspond à des longueurs d'onde allant de 0,017 m à 17 m.

Il existe trois types différents d’ondes :

  • L'onde mécanique : Les ondes magnétiques nécessitent une matière qui se déforme afin de se propager. Ce matériau a la capacité recouvrer son état initial grâce aux forces de restauration qui inversent la déformation.
  • L'onde électromagnétique : Les ondes électromagnétiques quant à elles n’ont pas besoin de support pour se déplacer : elles correspondent à des oscillation périodiques de champs électriques et magnétiques qui peuvent alors se déplacer dans le vide.
  • L'onde gravitationnelle : Les ondes gravitationnelles n’ont plus de support pour se déplacer puisque ce sont les déformations de la géométrie de l’espace-temps qui se propagent.

Une onde mécanique progressive correspond a un phénomène de perturbation locale dans un milieu matériel. Ainsi, pour une onde mécanique, on ne peut observer de déplacement de matière mais un transport d’énergie.

Reconnaître une onde

Il existe différentes façons de mettre en valeur des ondes :

  • Onde à une dimension
    • Corde vibrante
    • Fibre optique
  • Deux dimensions
    • Surface d’un plan d’eau
    • Table d’harmonie d’un instrument de musique
  • Trois dimensions
    • La propagation du son de l’orgue dans le volume intérieur d’une église
    • Interférences lumineuses dans un espace

Le déroulé de la propagation d'une onde

Pourquoi l'espace est-il silencieux ?
Contrairement à la lumière, le son ne peut pas se propager dans le vide puisqu'il a besoin d'un support pour ses vibrations.

Lorsque l'onde se propage dans un milieu fluide compressible, il est possible d'observer une variation de pression qui va alors se propager sous la forme d'une onde. L'air nous entourant étant un milieu fluide compressible, il est alors possible de ressentir ces ondes sous la forme de son que l'on perçoit grâce aux tympans. Cependant, pour qu'elle soit perceptible, il faut que la variation de pression, parce que son amplitude est faible par rapport à la pression atmosphérique, soit suffisamment rapide et répétée.

Il est possible de considérer tout objet vibrant, tel qu'un instrument de musique ou encore un haut-parleur, comme étant une source sonore qui est donc, comme son nom l'indique, la source des vibration de l'air. La perturbation va alors se propager, même si les particules oscillent très peu (soit quelques micromètres autour d'une position stable), d'une façon analogue aux perturbations de l'eau lorsqu'une pierre y tombe : on peut observer des vagues qui s'éloignent peu à peu du point de perturbation bien que l'eau reste au même endroit. En effet, l'eau ne se déplace que verticalement et ne suit pas les vagues (il est possible d'observer ce phénomène en plaçant un objet flottant près de la perturbation : il ne restera à la même position).

On peut alors dire que, dans les fluides, l'onde sonore correspond à une onde longitudinale. Ainsi, les particules observées vibrent de façon parallèle à la direction de déplacement de l'onde.

Une onde sonore peut également être transmise par un solide vibrant. En effet, la vibration va se propager au sein du solide comme dans les fluides : il y aura de faibles oscillation autour de la position d'équilibre des atomes constituant le solide. La conséquence est alors une contrainte du matériau qui, équivalente à la pression dans un fluide, est très difficile à mesurer. C'est donc la rigidité du matériau qui permettra la transmission des ondes de contraintes transversales.

Il peut être intéressant de noter que, la vitesse de propagation du son, également appelée célérité, varie selon différentes propriétés du milieu comme :

  • La nature du milieu ;
  • La température du milieu ;
  • Et la pression du milieu.

Ainsi, dans un gaz parfait, on peut obtenir la vitesse de propagation d'une onde sonore avec la relation suivante :

[ c = frac  { 1 } { \sqrt { rho chi _{S} } } ]

Avec :

  • ρ correspondant à la masse volumique du gaz ;
  • Et χS correspondant à la compressibilité isentropique du gaz.

Il est également possible d'observer une diminution de la vitesse du son lorsque :

  • La densité du gaz augmente, on appelle cela l'effet d'inertie ;
  • La compressibilité du gaz, c'est à dire sa capacité à changer de volume selon la pression qu'il subit, augmente.

Pour calculer la vitesse du son dont l'unité est, rappelons-le, le mètre par seconde, il est possible d'utiliser l'expression suivante : [ c _ { text { air } } = 330 + 0,6 times T ] avec T la température en degré Celsius.

Mais il est possible d'être plus précis en utilisant les degrés Kelvin. On doit alors se servir de l'expression suivante : [ c _ { text { air } } = 20 times \sqrt { T } ]

Notons que, de façon générale, la vitesse du son dans l'eau est de 1 500 m.s-1. Mais il existe de nombreux milieux où les ondes sonores peuvent se propager de façon encore plus rapide. On peut alors prendre l'exemple de l'acier au sein duquel les ondes se propage une vitesse comprise entre 5 600 et 5 900 m.s-1.

Cependant, une onde sonore est incapable de se propager dans le vide puisqu'il faut nécessairement la présence de matière déformable pour que la vibration puisse se propager.

La double périodicité des ondes mécaniques périodiques progressives

Prenons pour exemples deux points : M1 et M2.

M1 et M2 vont reproduire le mouvement de la source. Ils vont vibrer à la même fréquence.

Un point du milieu de propagation va se retrouver dans le même état vibratoire au bout d'une durée : T source.

Les trois points M , M' et M'' se retrouvent au même instant dans le même état vibratoire, on dit qu'ils vibrent en phase. Ces points on les retrouve à intervalle d'espace régulier dans un milieu. On parle donc de périodicité spatiale.

Longueur d'onde : La distance séparant deux points consécutifs du milieu vibrant en phase est appelée longueur d'onde. On la note λ et s'exprime en mètre. Autrement dit, la longueur d'onde correspond à la distance parcourue par l'onde dans le milieu matériel pendant une période de vibrations de la source.

Entendre le son : la description de l'oreille

Comment nettoyer correctement ses oreilles ?
Les oreilles sont des organes fragiles alors chérissez les.

Oreille externe

Elle se compose du pavillon de l’oreille (qui aide à localiser les sources sonores) et du conduit auditif. Ce dernier se termine par le tympan, qui réagit aux variations de pression comme la membrane d’un microphone.

Oreille moyenne

Les vibrations du tympan sont amplifiées dans l’oreille moyenne, puis transmises à l’oreille interne par trois osselets (le marteau, l’enclume et l’étrier), les plus petits du squelette humain. Le marteau est relié au tympan et l’étrier à la « platine de l’étrier » qui transmet la vibration au liquide de la cochlée

Le tympan humain

Le tympan correspond à une membrane fibreuse qui va séparer l'oreille externe de l'oreille moyenne. Son rôle est de capter les vibrations provoquées par les sons qui parviennent dans le conduit auditif externe pour ensuite les transmettre à la chaîne ossiculaire.

Oreille interne

L’oreille interne abrite le limaçon (cochlée), de la taille d’un petit pois. Rempli d’un liquide, celui-ci est partagé en deux dans le sens de la longueur par la membrane basilaire.

Cellules ciliées

Les sons font vibrer la membrane basilaire de manière sélective : les plus aigus sont captés sur la partie antérieure, tandis que les graves pénètrent au fond du limaçon. Ce mode de fonctionnement est comparable à celui d’un analyseur de fréquence. La membrane basilaire est tapissée d’environ 5000 cellules ciliées, des capteurs qui transforment les vibrations sonores en impulsions électriques transmises aux nerfs auditifs. Les 20 000 cellules ciliées externes jouent également un rôle important : véritables amplificateurs, elles permettent d’adapter la réaction de la membrane en fonction du signal à traiter.

La parfaite coordination de ces éléments autorise des performances extraordinaires

  • L’intensité acoustique correspondant au seuil d’audition est I0 = 1× 10−12W⋅m−2, celle correspondant au seuil de la douleur  IS= 1 W⋅m−2 ;
  • La gamme de fréquence allant de 20 Hz à 10 ou 20 kHz (selon l’âge) recouvre trois décades. À cela s’ajoute une excellente capacité de résolution, l’oreille distingue des signaux qui restent confus pour un analyseur sophistiqué, tels que la mélodie d’un instrument au sein d’un orchestre ;
  • L'ouïe dispose également d’une capacité de localisation très développée, qui lui permet d’identifier la provenance d’un cliquetis dans l’air à 3° près.

Quelques définitions en lien avec le son

Le décibel

Le décibel, en acoustique environnementale, permet d'indiquer le niveau de bruit. En effet, cette grandeur permet d'exprimer le rapport de puissance existant enter la pression acoustique et une valeur de référence qui a été choisie comme correspondant à un son imperceptible.

D'une façon générale, le niveau sonore en champ libre, ce qui signifie sans obstacle sur le trajet de l'onde, est inversement proportionnel au carré de la distance, c'est-à-dire à la distance multipliée par elle-même.

La pression acoustique

La pression acoustique correspond à une grandeur physique qui stimule l'audition humaine. La plage de pression qui donne un niveau sonore perceptible par l'Homme est comprise entre un rapport de un et plusieurs millions.

Attention cependant, la percepteur du volume sonore est, de façon approximative, logarithmique. Cela signifie alors qu'une augmentation définie du volume correspondra à multiplier la pression par un facteur qui est identique. C'est pourquoi on ne convertit que très rarement la mesure du bruit, qui est de façon générale, correspondant à la pression acoustique en décibel.

L'intensité acoustique

Afin de déterminer les chemins de propagation des sons dans un environnement, les études acoustiques utilisent fréquemment l'intensité acoustique. Cette grandeur correspond à la représentation de la puissance acoustique qui est transmise dans une direction définie. S'établissant généralement à partir d'un gradient de pression, on utilise logiquement un réseau de capteurs ou encore en ensemble de capteurs de vitesse acoustiques que l'on couple à un capteur de pression.

Attention toutefois aux confusions. En effet, parler d'une intensité acoustique n'induit pas toujours que l'on parle d'un niveau sonore. Il suffit pour démontrer cela de prendre l'exemple d'une onde stationnaire : son intensité est nulle alors que la pression acoustique ne l'est pas et l'on entend pourtant un son.

Une onde dite stationnaire correspond à la propagation simultanée et dans des sens opposés de plusieurs ondes de même fréquence et de même amplitude dans un même milieu. Ainsi, on observera une figure dont certains points sont fixes, appelés nœuds de pression, dans le temps. Il est alors possible d’observer une vibration stationnaire et d’intensité différente en chaque point observé au lieu de pouvoir observer une onde qui se propage.

La puissance acoustique

Afin de comparer deux sources de bruit, il est nécessaire d'utiliser la puissance acoustique qui s'exprime en dB SWL. Il est possible d'obtenir la valeur de cette grandeur en plaçant la source que l'on souhaite tester dans une chambre réverbérante afin que les sons soient mélangés dans toutes les directions. Mais il est également possible d'obtenir cette valeur en effectuant une série de mesures tout autour de la source sonore à tester.

Accorder un instrument de musique

Comment accorder un violon ?
Selon la façon dont il est accordé, un instrument n'émettra pas les mêmes sons.

Le battement

D'un point de vue physique, un battement est une modulation périodique d'un signal. Ce dernier est constitué d'une superposition de deux signaux de deux fréquences différentes mais proches.

En effet, l'oreille humaine ne peut entendre deux sons différents que si leurs fréquences sont au moins éloignées de 0,5 Hertz à 5 Hertz.

Pour que les battements soient audibles par l'oreille, il faut que plusieurs conditions soient réunies telles que :

  • Le battement doit être assez rapide (si la période est supérieure à 5 secondes alors le battement ne s'entendra pas) ;
  • Le battement ne doit pas être trop rapide sinon on pourra en distinguer les deux composantes ;
  • Les deux intensités des deux ondes doivent être environ égales afin que l'une ne se superpose pas à l'autre et la masque.

Les ondes mécaniques formées par les instruments de musique sont des ondes sinusoïdales. La fréquence de ces ondes définit la hauteur de la musique.

Ces ondes sont aussi périodiques.

Si l'on analyse de manière mathématique ces ondes musicales, on remarque que la somme de deux sinusoïdes est égale à la moyenne des fréquences de ces deux ondes sinusoïdales.

La période d'une onde musicale

La période d'une onde représente la durée d'une vibration complète, jusqu'au retour à la position initiale. Elle se note T et a une durée en secondes.

Avec T correspondant à la durée d'un motif de base (Rappel pour les conversions : 1 ms = 1 x 10-3 s).

La fréquence des ondes

La fréquence caractérise le nombre de vibrations en une seconde. Calculée en Hertz de symbole Hz, on l'obtient par le calcul suivant :

[ f = \frac { 1 } { T } ]

A titre d’exemple, la voix humaine produit des sons d'une fréquence allant de 50 Hz à 1000 Hz.

L'amplitude d'une onde

L'amplitude correspond à la variation de la pression du milieu dans lequel se propage l'onde dans le cas d'une onde acoustique. Pour une onde électromagnétique, son amplitude est sa tension maximale.

Amplitude : L'amplitude, c'est la tension maximale, elle se note Umax. Son unité est le Volt (V).

La longueur d'onde

La longueur d'onde est caractérisée par la plus petite distance entre deux points de l'onde situés au même endroit. sur l'axe des ordonnées. Représentant la distance parcourue par l'onde durant sa période, il s'agit de son équivalent spatial.

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5.00 (1 note(s))
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !