Les meilleurs professeurs de Physique - Chimie disponibles
Houssem
5
5 (200 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
120€
/h
Gift icon
1er cours offert !
Chris
5
5 (457 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Patrick
5
5 (45 avis)
Patrick
75€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Houssem
5
5 (200 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
120€
/h
Gift icon
1er cours offert !
Chris
5
5 (457 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Patrick
5
5 (45 avis)
Patrick
75€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
C'est parti

Introduction

A quoi sert le double vitrage ?
Le double vitrage permet de limiter les transferts d'énergie thermique entre l'intérieur et l'extérieur d'une maison

Ce qu'on appelle transfert thermique en sciences est plus couramment appelé chaleur dans la vie quotidienne. Un transfert thermique correspond à l'un des modes d'échange d'énergie thermique entre deux systèmes. Dans le cas du double vitrage, on parlera du système extérieur et du système intérieur (la maison). Cela correspond à une notion fondamentale de la thermodynamique et, contrairement au travail, les transferts thermiques correspondent à un bilan de transferts d'énergie dits microscopiques et désordonnées. Il est possible de distinguer trois type de transfert thermique, tous pouvant coexister :

  • La conduction correspond à la diffusion progressive de l'agitation thermique dans la matière ;
  • La convection correspond au transfert thermique qui accompagne des déplacements macroscopiques de la matières ;
  • Et le rayonnement qui correspond à la propagation de photons.

Ainsi, la quantité de chaleur, notée Q et exprimée en joule, correspond à la quantité d'énergie qui sera échangée par le moyen de ces trois différents type de transfert. Une convention indique alors que, lorsque Q > 0, on dit que le système reçoit de l'énergie. De plus, il peut être intéressant de retenir que la thermodynamique fait appel au concept de chaleur afin de mettre en place le premier mais aussi de deuxième principe de la thermodynamique. Malgré tout cela, il reste de nombreuses ambiguïtés mais également de nombreuses confusions qui s'entretiennent.

En effet,  malgré le sens que l'on accorde à chaleur dans la vie quotidienne, le principe de chaleur au sens thermodynamique du mot n'a aucun lien avec la température. Cependant, il reste vrai que les transferts thermiques spontanées se font toujours du système le plus élevé en température vers le système le moins élevé en température même s'il reste possible de provoquer l'inverse grâce à une machine thermique comme un réfrigérateur. Il est d'ailleurs intéressant de noter que, lorsqu'il y a un changement d'état, le corps pur ne changera pas de température bien qu'il échange de l'énergie sous forme de chaleur.

La thermochimie correspond à une branche de la physique chimie et permet l'étude des différents phénomènes thermiques dans des milieux réactionnels. On peut positionner cette branche, sur le plan disciplinaire, à l'interface entre la chimie et la thermodynamique. En chimie, il existe différents types de réactions : les réactions dites exothermiques et qui dégagent donc de la chaleur et les réactions dites endothermiques qui, quant à elles, absorbent la chaleur. Il est possible de déterminer et mesurer les chaleurs de réactions par calorimétrie à pression constante dans un calorimètre ou encore à volume constant dans une bombe calorimétrique. La bombe calorimétrique, inventée en 1881 par Marcellin Berthelot, est un outil permettant de mesurer le pouvoir calorifique d'une combustible. C'est pour cela que Marcellin Berthelot est considéré comme étant le fondateur de la thermochimie. Même s'il faudra attendre le XXe siècle que la thermochimie se développera considérablement. En appliquant le deuxième principe de la thermodynamique aux systèmes chimiques, il est possible de prévoir le sens des réactions mais aussi le positionnement des équilibres chimiques et ainsi de définir le rendement et la composition d'un système après la réaction.

Notion maîtresse

Application du second principe à une transformation chimique

Sous-notions associées

  • Chaleur de réaction

Au cours d'une réaction chimique, on dit que le système échange de l'énergie avec le milieu extérieur. Cet échange se fait sous la forme de transfert thermique, anciennement appelé chaleur. Cette énergie échangée sous forme de transfert thermique Q dépend des conditions expérimentales dans lesquelles se produit la réaction :

  1. Volume constant, on parle d'une transformation isochore, la thermodynamique montre que Q est égale à la variation d'énergie interne du système. On peut alors noter Qv = ΔU (c'est notamment le cas de la bombe calorimétrique)
  2. Pression constante, la chaleur est égale à la variation d’enthalpie : Qp = ΔH (ce qui représente le cas très fréquent des réactions effectuées à l’air libre).
  3. Enthalpie libre de réaction.

Pour tout système thermodynamique, il est défini une fonction d'état appelée enthalpie libre ou encore énergie de Gibbs. Cette fonction, notée G, est telle que G = H - TS avec : H l'enthalpie en joules, T la température en kelvin et S l'entropie en J.K-1

Cette fonction d'enthalpie libre est une fonction d'état considérée comme indispensable pour l'étude des équilibres chimiques. En effet, cette fonction ne peut que décroître dans le cas d'une transformation à pression et température constantes selon le deuxième principe de la thermodynamique. Cela permet donc, dans le cas d'une réaction chimique effectuée à T et P constantes, d'avoir le signe de l'enthalpie libre de réaction qui indique le sens dans lequel se déplace l'équilibre chimique. Ainsi, lorsque l'enthalpie libre atteint un minimum et donc qu'elle ne varie plus, alors l'équilibre chimique est atteint.

  • Enthalpie libre standard de réaction.
  • Relation entre ∆rG, ∆rG° et Qr ; évolution d’un système chimique.
  • Entropie standard de réaction ∆rS°.
  • Constante d’équilibre ; relation de Van’t Hoff.
  • Relation entre ∆rG, K°et Q r.
  • Caractérisation de l’état intensif d’un système en équilibre physico-chimique :
    • Variance,
    • Nombre de degrés de liberté d’un système à l’équilibre.
  • Optimisation d’un procédé chimique :
    • Par modification de la valeur de K° ;
    • Par modification de la valeur du quotient réactionnel.
  • État final d’un système : équilibre chimique ou transformation totale.

Comment progresser grâce aux cours de physique en ligne ?

État final d’un système : équilibre chimique ou transformation totale

Identifier le réactif limitant permet de prévoir la quantité de produit obtenue

Considérons la réaction chimique dont l'équation est: aA + bB  cC + dD où A et B sont les réactifs, C et D les produits et a, b, c et d sont les nombres stoéchiométriques. Les notations utilisées dans la suite sont résumées ci-dessous:

  • x : avancement de la réaction ;
  • n(A)0 : quantité de matière initiale de A ;
  • n(A) : quantité de matière de A à la date t ;
  • n(A)f : quantité de matière finale de A.

L'avancement final est un avancement qui est réellement observé, atteint. Mais l'avancement maximal correspond également à l'avancement atteint lorsqu'un réactif est entièrement consommé (avancement théorique observable).

Taux d'avancement τ

[ tau = \frac { x _ { f } } { x _ { text { max } } } ]

  • Si τ ≤ 1 => si τ = 1  xf = xmax alors on est en présence d'une réaction totale
  • τ < 1 , xf  ≠ xmax alors on est en présence d'une réaction partielle qui s'arrête lorsqu'elle atteint l'équilibre chimique.

Relation entre l'avancement et la concentration molaire volumique

Si on ne prend en compte que le cas particulier d'une réaction ayant lieu en solution aqueuse telle que le volume V de la solution soit constant, alors on peut utiliser l'expression suivante : [ left[ X right] = \frac { n ( X ) } { V } ] Avec :

  • [X] représentant la concentration molaire (en mol.L-1) ;
  • n(X) représentant la quantité de matière de l'espèce X en solution (en mol) ;
  • V représentant le volume de la solution (en L).

D'après ce qui précède, en divisant tous les termes de la relation de définition de l'avancement par V : [ \frac { x } { V } = \frac { left[ A right] _ { 0 } - left[ A right] } { a } = \frac { left[ B right] _ { 0 } - left[ B right] } { b } = \frac { left[ C right] } { c } =frac { left[ D right] } { d } ]

Vitesse volumique de réaction

On peut définir la vitesse volumique de réaction avec l'aide de l'expression suivante : [ v = \frac { a b } { c d } \frac { text { d } x } { text { d } t } ] Avec :

  • v représentant la vitesse volumique de réaction (en mol.m-3.s-1) ;
  • V représentant le volume de la solution (en m3) ;
  • dx représentant la variation de l'avancement (en mol) ;
  • dt représentant la durée de la variation (en s).

Remarques :

  • Il arrive fréquemment que le volume V soit exprimé en litre. La vitesse de réaction est alors exprimée en mol.L-1.s-1 ;
  • Si la transformation est lente ou très lente la durée peut être exprimée en minute ou en heure. La vitesse de réaction est alors exprimée en mol.L-1.min-1 ou en mol.L-1.h-1 ;
  • Le rapport dx/dt représente la dérivée par rapport au temps de l'avancement.

Capacités exigibles

Il est possible de prévoir l'évolution d'un système correspondant à deux corps en contact grâce à la thermodynamique
  • Relier création d’entropie et enthalpie libre de réaction lors d’une transformation d’un système physico-chimique à P et T fixées :

Exemple :

Si on considère A et B comme deux objets indéformables (donc δW = 0) qui forment à eux deux un système isolé (donc δQ = 0). Ainsi, si on se réfère au premier principe de la thermodynamique, on peut affirmer que la variation de l'énergie interne est égale à la somme de la chaleur et du travail. On a donc : [ delta W + delta Q = text { d}U ] Ainsi, si on considère δQA et δQB comme étant les énergie thermiques élémentaires échangées entre l'objet A et l'objet B, on a donc : [ delta Q _ { A } + delta Q _ { B } = delta Q = 0 ] Et donc : [ delta Q _ { A } = - delta Q _ { B } ] Ensuite, si on suit le deuxième principe de la thermodynamique, il est possible d'écrire la relation suivante permettant de faire le lien entre les entropie des objets A et B : [ text { d} S _ { left( A + B right) } = text { d} S _ { A } + text { d} S _ { B } > 0 ] De plus, puisqu'il est indiqué que le système étudié est isolé, on sait par définition que : [ text { d} S = \frac { delta Q } { T } ] De ce fait, on a [ text { d} S _ { left( A + B right) } = \frac { delta Q _ { A } } { T _ { A } } + \frac { delta Q _ { B } } { T _ { B } } ] On peut alors en déduire que [ delta Q _ { A } times left( \frac { 1 } { T _ { A } } - \frac { 1 } { T _ { B } } right) > 0 ] Ainsi, si δQA < 0 et donc que δQB > 0, alors on a TA > TB. De ce fait, en utilisant la règle des signes, on peut en conclure que l'objet A cède de la chaleur à l'objet B.

On peut donc en conclure que l'objet le plus chaud cède de la chaleur à l'objet le plus froid. Pour résumer la situation, dans le cas simple mettant en jeu un transfert thermique entre deux corps en contact avec des températures différentes, ce sera toujours le corps le plus chaud qui cédera de l'énergie thermique au corps le plus froid par conduction. Suite à cela, sa température va diminuer tout comme le désordre et l'agitation thermique. Cependant, pour le corps froid, la température et l'agitation thermique vont augmenter. L'exemple le plus simple de situation mettant en jeu un transfert thermique est celui de deux corps en contact ayant des températures différentes. Le corps le plus chaud cède de l'énergie au corps le plus froid par conduction ; sa température diminue, le désordre, l'agitation thermique, diminue. En contrepartie, la température du corps froid augmente, l'agitation thermique augmente en son sein.

  • Prévoir le sens d’évolution à P et T fixées d’un système physico-chimique dans un état donné à l’aide de l’enthalpie libre de réaction.
  • Déterminer les grandeurs standard de réaction à partir des tables de données thermodynamiques.
  • Déterminer les grandeurs standard de réaction d'une réaction dont l’équation est combinaison linéaire d’autres équations de réaction.
  • Interpréter ou prévoir le signe de l’entropie standard de réaction.
  • Définir la constante thermodynamique d’équilibre à partir de l’enthalpie libre standard de réaction.
  • Prévoir le sens de réaction à P et T fixées d’un système physico-chimique dans un état donné à l’aide de K°et Qr.
  • Énoncer et exploiter la relation de Van’t Hoff.
  • Déterminer la valeur de la constante d’équilibre thermodynamique à une température quelconque dans le cadre de l’approximation d’Ellingham.
  • Déterminer la valeur d’une constante d’équilibre thermodynamique d’une réaction par combinaison de constantes d’équilibres thermodynamiques d'autres réactions.
  • Déterminer la composition chimique du système dans l’état final, en distinguant les cas d’équilibre chimique et de transformation totale, pour une transformation modélisée par une réaction chimique unique.
  • Mettre en œuvre une démarche expérimentale pour déterminer la valeur d'une constante d'équilibre en solution aqueuse.
  • Reconnaître si une variable intensive est ou non un paramètre d’influence d’un équilibre chimique.
  • Recenser les variables intensives pertinentes de description du système à l'équilibre pour en déduire le nombre de degrés de liberté de celui-ci.
  • Identifier les paramètres d’influence et leur sens d’évolution pour optimiser une synthèse ou minimiser la formation d’un produit secondaire indésirable.
  • Approche documentaire : à partir de documents décrivant une unité de synthèse industrielle, analyser   les    choix industriels, aspects environnementaux inclus.
  • Loi liées à la thermodynamique :

Il est important de noter que le premier et le deuxième principe de la thermodynamique sont les plus importants, mais il peut tout de même intéressant de connaître les deux autres.

Vous cherchez un enseignant physique chimie ?

Le principe zéro de la thermodynamique

Ce principe concerne la notion d'équilibre thermique. Ainsi, il est à la base de la thermométrie et s'énonce ainsi : si deux systèmes sont en équilibre thermique avec un troisième, alors ils sont aussi ensemble en équilibre thermique.

Le premier principe de la thermodynamique

Egalement appelé principe de la conservation de l'énergie, ce principe affirme que l'énergie est toujours conservée. Formulé autrement, cela signifie que l'énergie totale d'un système isolé reste constante.

Ainsi, les événements qui se produisent au sein du système isolé ne se traduisent donc que par des transformations de certaines formes d'énergie en d'autres formes d'énergie. Puisque l'énergie ne peut pas être produite en partant de rien, elle est présente en quantité invariable dans la nature. Elle ne peut donc que se transmettre d'un système à un autre : on ne crée par l'énergie, on la transforme.

Ce principe est également considéré comme étant une loi générale pour toutes les théories physiques, notamment en mécanique, électromagnétisme ou physique nucléaire puisqu'on ne lui a jamais trouvé la moindre exception même si des doutes peuvent subsister lorsque l'on étudie les désintégration radioactives.

De puis le théorème de Noether, on sait que la conservation de l'énergie est intimement reliée à une uniformité de structure de l'espace-temps. Le premier principe de la thermodynamique rejoint alors le célèbre principe popularisé par Lavoisier : "Rien ne se perd, rien ne se crée, tout se transforme."

Par exemple, dans les voitures, le moteur permet de transformer de l'énergie thermique en énergie mécanique. Le saviez-vous ?

Le deuxième principe de la thermodynamique

Egalement appelé principe d'évolution des système, ce principe affirme la dégradation de l'énergie. En effet, l'énergie d'un système passe de façon nécessaire et spontanée de formes concentrées et potentielles à des formes diffuses et cinétiques telles que le frottement ou la chaleur. Ce principe introduit donc également la notion d'irréversibilité d'une transformation et la notion d'entropie.

En effet, d'après le deuxième principe de la thermodynamique, l'entropie d'un système isolé augmente ou reste constante. Souvent interprété comme une mesure du désordre et comme l'impossibilité du passage du désordre à l'ordre sans intervention extérieur. L'interprétation de ce principe se base sur la théorie de l'information de Claude Shannon et la mesure de cette information, également appelée entropie de Shannon.

La principale différence de ce principe avec le premier principe de la thermodynamique est l'origine statique de ce deuxième principe. En effet, les lois microscopiques qui gouvernent la matière ne le contiennent qu'implicitement et de manière statique. Cependant, le deuxième principe de la thermodynamique reste relativement indépendant des caractéristique des lois précédemment citée puisqu'il apparaît même si l'on suppose des lois simplistes à petite échelle.

Le troisième principe de la thermodynamique

Ce principe, quant à lui, est associé à la descente vers un état quantique fondamental d'un système dont la température s'approche d'une limite qui définit la notion de zéro absolu. En effet, en thermodynamique classique, ce principe permet de calculer l'entropie molaire S d'un corps pur par intégration sur la température à partir de S=0 à 0 K dans le but d'établir des tables de données thermodynamiques.

La loi de Laplace en thermodynamique

La loi des gaz parfait intervient dans de nombreux domaines

En thermodynamique, cette loi correspond à une relation reliant la pression et le volume d'un gaz parfait qui subit une transformation dite isentropique ou une transformation dite adiabatique et réversible. Mais cette relation peut également être utilisée avec la température et le volume ainsi que la température et la pression. La loi de Laplace suppose en effet des capacités thermiques constante alors que les capacités thermiques d'un gaz parfait dépend évidemment de la température, il suffit de regarder la loi des gaz parfait. En conséquence, cette loi ne peut être appliquée à des transformation où la variation de la température est peu important. On peut alors considérer que les capacités thermiques sont constantes.

[ P times V = n times R times T ]

Avec :

  • P est la pression d'un gaz (en pascals) ;
  • V le volume occupé par le gaz (en m3) ;
  • n la quantité de matière (en moles) ;
  • R la constante universelle des gaz parfaits (8,3144621 J/K/mol) ;
  • Et T est la température (en kelvins).

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5.00 (1 note(s))
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !