Les meilleurs professeurs de Physique - Chimie disponibles
Chris
5
5 (456 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Houssem
5
5 (197 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4.9
4.9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chris
5
5 (456 avis)
Chris
116€
/h
Gift icon
1er cours offert !
Greg
5
5 (335 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Antoine
4.9
4.9 (140 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Houssem
5
5 (197 avis)
Houssem
60€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4.9
4.9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

La mécanique des fluides

Pourquoi l'eau ruisselle ?
L'eau est un fluide courant par chez nous. Il est donc facile à étudier et on l'utilise généralement comme référence afin de comparer les caractéristiques des autres fluides.

L'écoulement des fluides

L'écoulement laminaire

Quand on parle d'écoulement laminaire en mécanique des fluides, on évoque le mode d'écoulement d'un fluide dans le cas où l'ensemble du fluide s'écoule plus ou moins dans la même direction et cela sans que les différences locales ne se contrarient. On est alors en opposition au régime turbulent au cours duquel l'écoulement produit des tourbillons qui vont mutuellement se contrarier. Ainsi, lorsque l'on cherche à faire circuler un fluide dans un tuyau, on cherche à mettre en place un écoulement laminaire afin qu'il y ait moins de pertes de charge. Mais on cherche aussi à mettre en place un écoulement laminaire lorsque l'on cherche à faire voler un avion afin que le vol soit stable et prévisible à l'aide d'équations.

L'écoulement laminaire d'un point de vue microscopique
Comment choisir le bon grossissement ?
Il y a parfois une énorme différence entre l'échelle micro et l'échelle macroscopique. En effet, un système d'apparence ordonnée peut, en réalité, donner un système désordonné lorsque l'on fait une observation au microscope.

Il est toujours intéressant d'apporter un point de vue microscopique à une réflexion. en effet, alors que rien ne se voit d'un point de vue macroscopique, il peut se passer beaucoup de chose dans le monde du très petit. Lorsque l'on observe un écoulement laminaire à l'échelle microscopique, on peut observer que deux particules de fluides qui sont voisines à un instant défini resteront voisines lors des prochains moments d'observation. Par cette observation, on peut décrire un champ de vitesse grâce à l'utilisation de techniques classiques d'analyse mathématique. Dans le cas où l'écoulement devient turbulent, celui-ci devient alors sans organisation apparente. Les techniques classiques d'analyse mathématique utilisées précédemment ne suffisent alors plus pour décrire le champ de vitesse.

L'écoulement laminaire d'un point de vue macroscopique

Tout comme la notion de régime turbulent, la notion de régime laminaire est très fortement liée à la viscosité du fluide en mouvement. En effet, lorsque le liquide se situe dans une conduite ou autour d'un obstacle, alors, au voisinage d'une paroi sur laquelle la vitesse relative du fluide est nulle, on peut alors observer l'apparition de fortes variations de vitesse au sein desquelles la viscosité est impliquée. De façon plus précise, on peut dire que l'écoulement visqueux est caractérisé grâce à un nombre sans dimension que l'on appelle le nombre de Reynolds. Ce nombre permet alors de mesurer l'importance relative des forces inertielles qui sont liées à la vitesse et des forces de frottement qui sont liées à la viscosité. Ainsi, si ces dernières sont prépondérantes, alors on peut dire que le frottement, qui se produit entre deux couches de fluides, maintient leur cohésion : on obtient ainsi un écoulement laminaire. Dans le cas où le nombre de Reynolds augmente au-delà d'un certain seuil, alors l'écoulement est déstabilisé. Dans ce cas, il peut y avoir un régime turbulent qui va se mettre en place après qu'une phase de transition, plus ou moins importante, ait eu lieu.

Le nombre de Reynolds, noté Re, correspond à un nombre sans dimension qui est utilisé en mécanique des fluides. Cette grandeur permet alors de caractériser un écoulement, en particulier la nature de son régime. Il est ainsi possible de savoir si un écoulement est laminaire, transitoire ou turbulent.

Le régime turbulent

Lorsque vous subissez des turbulences en plein vol, c'est tout simplement que votre avion entre dans une zone où le flux d'air provoque une zone d'écoulement turbulent. Le terme turbulence correspond à l'état de l'écoulement d'un fluide, qu'il soit liquide ou gaz, au sein duquel la vitesse présente un caractère tourbillonnaire. On entend par là la présence de tourbillons dont la taille, la localisation mais également l'orientation vont, de façon constante, varier. On peut caractériser un écoulement turbulent par une apparence très désordonnée mais également par un comportement qui restera difficilement prévisible et par l'existence de nombreuses échelles spatiales et temporelles. Il est possible de voir apparaître ce type d'écoulement dans le cas où la source d'énergie cinétique, qui provoque la mise en mouvement du fluide, est relativement intense devant les forces de viscosité que le fluide va opposer pour se déplacer. On peut alors opposer cet écoulement au régime laminaire qui est régulier. Pour étudier le comportement complexe des écoulements turbulent, il faut, dans la plupart des cas, utiliser la voie statistique. En effet, on peut, de ce fait, considérer que cette étude fait partie intégrante de la physique statistique afin de traduire que, lors d'un écoulement, les forces d'inertie l'emportent sur les forces de viscosité.

Qu'est-ce-que le nombre de Reynolds ?
Encore une fois, les mathématiques sont très importantes dans la physique-chimie. En effet, sans elles, il serait difficile d'étudier les écoulements.

Écoulement de Poiseuille et loi de Poiseuille

La loi de Poiseuille, que l'on appelle aussi loi de Hagen-Poiseuille, permet de décrire ce que l'on appelle écoulement laminaire, c'est à dire un écoulement sous la forme de filets de liquide parallèles, d'un liquide visqueux au sein d'une conduite cylindrique. On appelle logiquement écoulement de Poiseuille tout écoulement qui suit une loi de Poiseuille. De façon générale, la loi de Poiseuille permet de décrire de façon théorique la relation existante entre le débit d'un écoulement et la viscosité d'un fluide, mais aussi la différence de pression aux extrémités de la canalisation ainsi que la longueur et le rayon de cette même canalisation.

Écoulement torrentiel et fluvial

On parle d'écoulement torrentiel et d'écoulement fluvial dans le cas d'un équilibre de l'écoulement d'un liquide dans un canal ou encore un cours d'eau ou une conduite à la surface libre. De façon plus précise, on parle d'écoulement torrentiel dans le cas où le nombre de Froude est supérieur à 1, ce qui signifie alors que la vitesse du courant est supérieure à la vitesse d'une vague de liquide étudié. Dans le cas contraire, on parle d'écoulement fluvial. Notons qu'il est possible de passer d'un régime torrentiel à un régime fluvial lorsqu'il y a un ressaut hydraulique, ce qui signifie qu'il y a une élévation du niveau d'eau ou encore lorsqu'il y a une dissipation d'énergie. Il est d'ailleurs possible d'observer ce phénomène dans un évier de cuisine.

Écoulement polyphasique

On parle d'écoulement polyphasique lorsque l'on observe un écoulement de fluide comportant plusieurs phases. On peut, par exemple, étudier le comportement d'un fluide qui comporte en son sein des bulles de gaz ou encore étudier le comportement d'un mélange de deux fluides non miscibles.

Le fluide et sa viscosité

On appelle viscosité l'ensemble des phénomènes de résistance à l'écoulement qui peuvent se produire dans la masse d'une matière dans le cas d'un écoulement que l'on considère comme étant uniforme et sans turbulence. De façon logique, plus la viscosité sera élevée, plus la capacité que possède le fluide à s'écouler facilement va diminuer. De plus, lorsque la viscosité est élevée, l'énergie qui sera dissipée par l'écoulement sera importante. La viscosité de cisaillement, qui peut être comprise comme une résistance à l'écoulement des différentes couches d'un fluide les unes sur les autres, englobe plusieurs grandeurs physiques qui permettent de la caractériser :

  • La viscosité dynamique qui est la grandeur la plus utilisée. En effet, on se réfère généralement à cette grandeur lorsque l'on parle de viscosité sans précision. Elle permet de faire le lien entre la contrainte de cisaillement et le gradient transversal de la vitesse d'écoulement dans la matière. C'est donc pour cela que l'on appelle cette grandeur vitesse dynamique.
  • La viscosité cinématique, cette grandeur peut être déduise de la vitesse dynamique ;
  • La seconde viscosité qui caractérise la résistance du fluide à des variations de volume ;
  • Et pour finir, la viscosité de volume qui correspond à la combinaison de la viscosité dynamique et la seconde viscosité.

De ce fait, on peut considérer la viscosité comme correspondant à une quantité tensorielle bien qu'il reste possible que, selon les cas, on puisse exprimer cette grandeur sous la forme d'une grandeur scalaire. La viscosité (de cisaillement) peut être vue comme la résistance à l'écoulement des différentes couches d'un fluide les unes sur les autres. Plusieurs grandeurs physiques caractérisent la viscosité : En ce qui concerne les liquides, alors que l'inverse est vrai pour les gaz, la viscosité va tendre, de façon générale, à diminuer lorsque la température va augmenter. De plus, croire que la viscosité d'un fluide donné augmente avec la densité est faux car ce n'est pas nécessairement vrai. On peut en effet prendre l'exemple de l'huile qui, pourtant moins dense que l'eau (0,92 pour l'huile de Colza à 20°C et 1 pour l'eau à 20°C) alors que l'huile est, de façon très nette, plus visqueuse que l'eau. Pour ce qui est des huiles de mécaniques, elles seront classées selon leur viscosité puisque l'huile utilisée dans les moteurs va varier selon les besoins de lubrifications de celui-ci mais aussi selon les températures auxquelles l'huile mécanique sera soumise lorsque le moteur sera en marche.

La viscosité peut varier

Comme expliqué précédemment, la viscosité d'un fluide varie selon la température, mais aussi les actions mécaniques auxquelles ce fluide est soumis. Ainsi, afin de déterminer l'importance de l'effet de la température sur la viscosité d'un fluide, on va utiliser un indice appelé indice de viscosité. De façon logique, plus cet indice est grand, moins la température aura une influence sur la viscosité du fluide étudié.

Le dispositif de ludion

Quelle est la différence entre la physique et la chimie ?
Il peut être intéressant d'initier de façon ludique un enfant à la physique-chimie de base grâce à de petites activités amusantes.

Le ludion est un objet, connu comme un jouet, qui peut être très impressionnant. Celui-ci correspond alors à un objet que l'on immerge dans un récipient comme, par exemple, une bouteille d'eau. Cet étonnant objet réagit alors de façon étonnante selon la pression exercée sur le récipient :

  • Si on appuie sur la bouteille, alors le ludion va couler ;
  • Si on relâche la pression exercée sur la bouteille, alors le ludion va remonter.

Cela permet alors d'initier de façon simple certains concepts scientifiques aux plus jeunes puisque le principe de ce jouet repose sur la poussée d'Archimède très utilisée au sein de la mécanique des fluides. Mais il se trouve que c'est également ce principe qui est utilisée pour les sous-marins ou alors pour mesurer la vitesse d'écoulement d'un liquide dans une canalisation.

La poussée d'Archimède

La poussée d'Archimède est un phénomène physique qui décrit le comportement de tout corps plongé dans un fluide qu'il soit liquide ou gazeux soumis à un champ de gravité. Elle est nommée ainsi en l'honneur d'Archimède de Syracuse, un très grand scientifique grec de 200 avant J.-C. Elle est causée par l'augmentation de la pression du fluide avec la profondeur. Comme la pression exercée sur la partie basse du corps est supérieure à celle exercée sur la partie haute, le corps est poussé verticalement vers le haut. Voici la formulation d'origine de cette loi physique :

Tout corps plongé dans un fluide au repos, entièrement mouillé par celui-ci ou traversant sa surface libre, subit une force verticale, dirigée de bas en haut et opposée au poids du volume de fluide déplacé ; cette force est appelée poussée d'Archimède.

Pour que le théorème s'applique il faut que le fluide immergeant et le corps immergé soient au repos. Il faut également qu'il soit possible de remplacer le corps immergé par du fluide immergeant sans rompre l'équilibre. Voici l'équation qui en résulte : [ overrightarrow { P } _ { A } = M _ { f } overrightarrow { g } ] Avec :

  • Mf< la masse du fluide contenu dans un volume V et déplacé ;
  • g la valeur du champ de pesanteur, de 9,81 N/kg à la surface de la Terre.

Quelques exemples

La poussée d'Archimède intervient dans de nombreux cas de notre vie de tous les jours. Par exemple, c'est la poussée d'Archimède qui fait qu'on ne coule pas lorsque l'on fait la planche sur l'eau. C'est aussi grâce à elle qu'un glaçon flotte à la surface d'un verre même lorsqu'il fond. La poussée d'Archimède est aussi très utile à de nombreux appareils flottant ou volant. C'est grâce à elle que les bateaux ne coulent et que les sous-marins peuvent gérer leur profondeur. Les ballons dirigeables et les montgolfières peuvent aussi voler dans le ciel grâce à la poussée d'Archimède et au gaz moins dense que l'air qu'ils contiennent.

Exercice sur le dispositif de ludion

Un ludion est constitué :

  • D'un tube vertical rempli d'eau, fermé par une membrane ou un piston,
  • D'un objet creux, partiellement rempli d'air et présentant une ouverture dans sa partie inférieure, immergé dans le tube.

On constate que l'on peut faire descendre l'objet dans le tube en appuyant sur la membrane ou le piston.

  1. Existe-t-il une valeur de pression sur la membrane pour laquelle l'objet peut être en position d'équilibre au milieu du tube ? Si oui, cet équilibre est-il stable ?
  2. Interpréter le phénomène décrit ci-dessus.

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 5.00 (1 note(s))
Loading...

Joy

Freelancer et étudiante en Sciences de la Vie et de la Terre, je suis un peu une grande sœur qui épaule et aide les autres pour observer et comprendre le monde qui nous entoure et ses curieux secrets !