Les meilleurs professeurs de Physique - Chimie disponibles
Chris
5
5 (483 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Houssem
5
5 (174 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Greg
5
5 (334 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (137 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
Chris
5
5 (483 avis)
Chris
96€
/h
Gift icon
1er cours offert !
Houssem
5
5 (174 avis)
Houssem
50€
/h
Gift icon
1er cours offert !
Greg
5
5 (334 avis)
Greg
140€
/h
Gift icon
1er cours offert !
Moujib
5
5 (113 avis)
Moujib
100€
/h
Gift icon
1er cours offert !
Antoine
4,9
4,9 (137 avis)
Antoine
60€
/h
Gift icon
1er cours offert !
Sébastien
5
5 (94 avis)
Sébastien
75€
/h
Gift icon
1er cours offert !
Pierre-thomas
5
5 (75 avis)
Pierre-thomas
80€
/h
Gift icon
1er cours offert !
Ahmed
4,9
4,9 (102 avis)
Ahmed
40€
/h
Gift icon
1er cours offert !
C'est parti

L'atome

En 400 av JC, un philosophe grecque nommée Démocrite est le premier homme à penser que la matière est constitué de minuscules particules tellement petite que l'on ne peut les diviser d'où leur nom de atomos qui signifie indivisible en grec.

La première approche des électrons date de l'époque de la Grèce Antique. Ceux-ci avaient pris conscience qu'une certaine oléorésine, l'ambre était capable d'attirée des objets si elle était frottée avec de la fourrure. Sans le savoir, ils venait de découvrir l'électricité statique. Il s'agit du deuxième phénomène électrique dont l'Homme a pris conscience, juste après la foudre.

En 1269, un ingénieur militaire qui servait auprès du prince Charles Premier de Sicile, se mit à étudier le phénomène d'attirance ente des petits objets après qu'ils aient été frottés.

La découverte de l'atome est imputable à Ernest Rutherford. Durant le début des années 1910, il s'est attelé à comprendre la composition de l'atome. Il a alors déterminé que l'atome était constitué d'un noyau qui concentrait toute la charge positive et aussi presque toute la masse de l'atome. Ce noyau est entouré d'un nuage électronique composé d'électrons.
L'un de ses collègues de laboratoire, Niels Bohr, a quant à lui démontré que les états de l'électrons dépendaient de l'énergie déterminée par le nombre n de l'atome. C'est à lui qu'on doit la compréhension de l'émission d'un photon lors d'un passage à un état inférieur.

De quoi est constitué la matière ?
L'atome est la base la plus petite qui constitue la matière. En effet, ce sont les atomes liés entre eux qui permettent l'existence des molécules.

Quelques caractéristiques de l'atome

La masse des électrons est négligeable devant celle du noyau.

On dit que la masse d'un atome est concentrée dans son noyau.

La charge électrique de l'atome est la somme de la charge électrique + des particules du noyau et celle – des électrons.

Cette somme est nulle : On dit que l'atome est électriquement neutre.

Les charges électriques étant les même, il y a autant d'électrons qui gravitent autour du noyau que de particules le constituant.

Le diamètre d'un atome vaut en moyenne 10-1 nm (1 nm = 10 -9 m) tandis que le diamètre du noyau vaut en moyenne 10-6 nm.

Le noyau est 100 000 fois plus petit que l'atome.

Entre les électrons et le noyau, il n'y a que du vide. On parle de la structure lacunaire de l'atome.

L'électron est donc l'un des composants de l'atome au même titre que les neutrons et protons. C'est une particule élémentaire que l'on note petit e et dont la charge élémentaire est de signe négatif. Ils s'organisent autour du noyau de l'atome dans ce que l'on appelle un nuage électronique.

Les électrons et leurs propriétés ont aidé à la compréhension d'une multitude de phénomènes physiques, notamment en termes de conductivité.

L'ion

Un ion est un atome, qui à perdu ou gagné un ou plusieurs électrons (3 max.). Exemple, le lithium (Li) perd un électron il devient l'ion de lithium (Li+). Un autre exemple, le fluor (F) gagne un électron, il devient l'ion de fluor (F-). Si un atome perd 2 électrons, imaginons que cette atome soit l'hydrogène (H), il devient l'ion d'hydrogène (H+2).

Un atome (ou groupe d'atomes) qui perd un ou plusieurs électrons devient une espèce chimiquement chargée appelée ion. La charge du noyau reste inchangée.

Un ion négatif est un atome (ou groupe d'atome) qui à gagné un ou plusieurs électrons.

Un ion positif est un atome (ou groupe d'atome) qui à perdu un ou plusieurs électrons.

Le cristal ionique et ses propriétés

Comment reconnaître un cristal ionique ?
Comme beaucoup d'autres éléments nous entourant dans notre quotidien, le sel est un cristal ionique.

Les cristaux ioniques sont constitués d'anions et de cations tenus entre eux par l'attraction électrique. Cette attraction est responsable de la structure géométrique qu'adoptent les ions pour former un cristal. Un ion positif va s'entourer d'ions négatifs et réciproquement et de la même manière que les atomes ou molécules forment les solides, les ions forment les cristaux.

Exemple : Dans un cristal de chlorure de sodium NaCl, les ions adoptent une structure cubique où un anion est entouré de 6 cations. Un cristal ionique est toujours électriquement neutre donc il y a autant de charges positives que négatives. Par conséquent, certains cristaux possèdent plus d'anions et de cations (ou inversement).

Cohésion des cristaux ioniques

Les ions étant jointifs, la distance qui les sépare correspond à la distance entre leur centre. La cohésion du cristal est due à l'interaction coulombienne qui correspond à la force qui lie deux ions. La valeur de cette force peut paraître faible mais elle est bien plus importante par rapport au poids de l'ion. A cette échelle, c'est la force électrique qui domine. La température de fusion des solides ioniques est assez élevée (801 °C) pour le sel, ce qui veut dire que les liaisons entre ions sont très solides.

La loi de Coulomb

Coulomb, un physicien français, a établi en 1758 que le champ doit varier comme le carré inverse de la distance entre les charges à une précision de 0,02 sur l'exposant avec l'aide d'un dispositif appelé balance de Coulomb. Cette balance est constituée d'un fil de torsion en argent sur lequel est fixé des matériaux chargés. Ainsi, la loi d'attraction entre deux charges ponctuelles notées q1 et q2 , fixes dans le référentiel défini et séparées par une distance r, se définit ainsi :

  • La force est dirigée selon la droite reliant les deux charges ;
  • Elle est attractive si les charges sont de signes opposée et répulsive sinon ;
  • Son intensité est proportionnelle aux valeurs de q1 et q2 et varie en raison inverse du carré de la distance r.

Il est alors possible de traduire ces caractéristiques en une formule exprimant la force exercée par q1 sur q2 : \[ \overrightarrow{ f _ { e } } = \frac { 1 } { 4 \pi \epsilon _ { 0 } } \frac { q _ { 1 } q _ { 2 } }{ r ^ { 2 } } \overrightarrow { e _ { r } } \] Avec :

  • \[ \overrightarrow { e _ { r } } \] le vecteur unitaire de la droite reliant q1 et q2 qui est dirigée dans le sens 1 vers 2
  • \[ \epsilon _ { 0 } \] la permittivité diélectrique du vide

Ce qui peut rendre la compréhension de cette formule compliquée est la notion de force à distance. En effet, comment une charge peut savoir qu'une autre charge ponctuelle se trouve à une certaine distance d'elle et alors exercer sur force sur cette charge en fonction de la distance qui les sépare. Dans ce cas, tout comme pour un champ gravitationnel, il peut être utile de séparer dans la loi de force ce qui dépend de la charge subissant la force et donc d'obtenir la relation suivante : \[ \begin{cases} \overrightarrow { f } = q _ { 2 } \left[ \frac { 1 } { 4 \pi \epsilon _ { 0 } } \frac { q _ { 1 } } { r ^ { 2 } } \overrightarrow { e _ { r } } \right] = q _ { 2 } \overrightarrow { E } \\ \overrightarrow{ E } = \frac { 1 } { 4 \pi \epsilon } \frac { q _ { 1 } } { r ^ { 2 } } \overrightarrow { e _ { r } } \end{cases} \] Avec :

  • \[  \overrightarrow { E } \] un champ électrique électrostatique créé à partie de la charge q1 au point où se trouve la seconde charge q2

Ainsi, avec cette relation, il est plus aisé d'interpréter l’existence d'une force à distance. En effet, la charge considérée comme "source", c'est-à-dire q1, crée en tout point de l'espace un champ électrique dont la forme est donnée par la relation exprimée ci-dessus, et une charge quelconque considérée comme "test" subira l'effet de ce champ sous la forme d'une force égale au produit de cette charge par le champ électrostatique. Dans ce cas, ce champ électrostatique apparaîtra comme la force entre deux particules ponctuelles fixes par unité de charge.

Les cristaux, les molécules et la polarisation

Tout comme la planète Terre, les molécules sont polarisées

Électronégativité des atomes

Dans le domaine de la chimie, on décrit l'électronégativité comme étant une grandeur physique caractérisant la capacité d'un atome à attirer un ou plusieurs électrons lors de la formation d'une liaison chimique avec une autre espèce. Selon leur configuration électronique, certains atomes capteront les électrons facilement alors que d'autres n'y arriveront pas. Par exemple, l'atome de fluor a pour configuration k2l7, il gagnera facilement un électron pour saturer la couche l. La facilité des atomes à capter un électron s'appelle l'électronégativité. Dans le tableau périodique, les atomes les plus électronégatifs se trouvent en haut à droite.

Polarité d'une liaison chimique

Lorsque deux atomes sont liés chimiquement, c'est qu'ils mettent en commun deux électrons. Les deux électrons sont alors en orbite autour des deux noyaux, ils forment alors la liaison. Dans le cas de deux atomes identiques, le doublet est également partagé et symétrique par rapport à l'axe de liaison. Dans le cas où, les deux atomes sont différents, celui qui est le plus électronégatif attire plus fortement le doublet. Le nuage électronique est alors plus dense du côté de l'atome le plus électronégatif et crée une charge négative à cet endroit et positive sur l'autre atome. Une telle molécule possède deux pôles électriques, on dit qu'elle est polarisée.

Les forces de Van Der Waals au sein des molécules

Nommées ainsi en l'honneur de Johannes Diderik van der Waals, un physicien néerlandais du XIX ème siècle, ces forces peuvent se décrire comme les interactions électroniques entres les atomes ou molécules, qui les lient ensemble.

Comment recevoir un prix Nobel ?
Le prix Nobel est une distinction très réputée.

Johannes Diderik van der Waals fut le premier a les prendre en compte dans ses calculs en 1873. Cela lui valut de recevoir en 1910 le prix Nobel de physique.

Un prix Nobel, Nobelpriset de son nom original en suédois, est une récompense au niveau mondial qui gratifie son détenteur d’être l’une des personne ayant apporté le plus grand bénéfice à l’humanité. C’est un prix qui se remet tous les ans.Le premier a été remis en 1901. Ils récompensent des découvertes ou un travail en faveur de la paix.
Il en existe 5 : le prix Nobel de physique, le prix Nobel de chimie, le prix Nobel de la paix, le prix Nobel de médecine et de physiologie et le prix Nobel de littérature.

Ce phénomène s'explique par la répartition des charges au sein d'une molécule ou au sein des couples d'atomes. Pour plus de détails, il faut néanmoins se plonger dans la physique quantique pour en comprendre les principes les plus poussés.

On peut leur trouver trois origines :

  • L'interaction électrostatique attractive entre deux multipôles induits, il s'agira dans ce cas des forces de London ;
  • L'interaction attractive entre un multipôle permanent et un multipôle induit et il s'agira des forces de Debye ;
  • L'interaction électrostatique attractive ou répulsive entre deux multipôles permanents selon leurs orientations, il s'agit alors des forces de Keesom.

Les exemples les plus flagrants des effets des forces de Van Der Waals sont les absorptions par capillarité ainsi que les systèmes d'accroche des pattes de gecko qui peuvent coller aux murs.

Exemples d'ions présents dans certains composés

Composés ioniquesFormulesIons présents
Hydroxyde de sodium (soude)NaOHNa+ et OH-
Chlorure de sodium (sel)NaCLNa+ et Cl-
Sulfate de cuivreCuSO4Cu+ et SO42-
Nitrate d'argentAgNO3Ag+ et NO3-
Chlorure d'argentAgClAg+ et Cl-
Hydroxyde de potassium (potasse)KOHK+ et OH-
Permanganate de potassiumKMnO4K+ et MnO4-
Dichromate de potassiumK2Cr2O72K+ et Cr2O72-
Chlorure de fer IIIFeCl3Fe3+ et 3Cl-

Vous avez aimé cet article ? Notez-le !

Aucune information ? Sérieusement ?Ok, nous tacherons de faire mieux pour le prochainLa moyenne, ouf ! Pas mieux ?Merci. Posez vos questions dans les commentaires.Un plaisir de vous aider ! :) 4,00 (19 note(s))
Loading...

Clément

Freelancer et pilote, j'espère atteindre la sagesse en partageant le savoir que j'ai acquis lors de mes voyages au volant de ma berline. Curieux scientifique, ma soif de découverte n'a d'égale que la durée de demie-vie du bismuth 209.